Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sentiment Analysis Tutorial using laser #276

Merged
merged 1 commit into from
Dec 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions tasks/SentimentAnalysis/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Laser Encoder: Sentiment Analysis

## Overview

This project demonstrates the application of the Laser Encoder tool for creating sentence embeddings in the context of sentiment analysis. The Laser Encoder is used to encode text data, and a sentiment analysis model is trained to predict the sentiment of the text.

## Getting Started

To run the notebook in Google Colab, click the "Open in Colab" button below:

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NIXBLACK11/LASER-fork/blob/Sentiment-analysis-laser/tasks/SentimentAnalysis/SentimentAnalysis.ipynb)

Also, check out the hugging face space with the button below:

[![Open In Hugging Face Space](https://img.shields.io/badge/Open%20In-Hugging%20Face%20Space-blue?logo=huggingface)](https://huggingface.co/spaces/NIXBLACK/SentimentAnalysis_LASER_)


## Example Usage

Run the Example Notebook:
Execute the provided Jupyter Notebook SentimentAnalysis.ipynb

jupyter notebook SentimentAnalysis.ipynb


## Customization

- Modify the model architecture, hyperparameters, and training settings in the neural network model section based on your requirements.
- Customize the sentiment mapping and handling of unknown sentiments in the data preparation section.

## Additional Notes
- Feel free to experiment with different models, embeddings, and hyperparameters to optimize performance.
- Ensure that the dimensions of embeddings and model inputs are compatible.
Adapt the code based on your specific dataset and use case.
Loading
Loading