forked from kctess5/range_libc
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvisualize.py
324 lines (253 loc) · 10.4 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import numpy as np
import matplotlib.pyplot as plt
import yaml
from yaml import CLoader as Loader, CDumper as Dumper
import ujson
import itertools
import argparse
import scipy.misc
# dump = yaml.dump(dummy_data, fh, encoding='utf-8', default_flow_style=False, Dumper=Dumper)
# data = yaml.load(fh, Loader=Loader)
parser = argparse.ArgumentParser()
parser.add_argument('--path', help='Path to serialized json CDDT data structure')
class Map(object):
""" Map saved in a serialized CDDT """
def __init__(self, data):
print "...loading map"
self.path = data["path"]
self.width = data["width"]
self.height = data["height"]
self.data = np.array(data["data"]).transpose()
def visualize(self):
plt.imshow(-1*self.data, cmap="gray")
plt.show()
class CDDTSlice(object):
""" Contains a single slice of CDDT corresponding to a single theta value"""
def __init__(self, data):
# print "...loading slice"
self.theta = data["theta"]
self.zeros = data["zeros"]
def num_zeros(self):
return [len(lut_bin) for lut_bin in self.zeros]
def ddt_dims(self):
non_empty_zeros = filter(lambda x: len(x) > 0, self.zeros)
min_zero = min(map(min, non_empty_zeros))
max_zero = max(map(max, non_empty_zeros))
return [int(np.ceil(max_zero - min_zero))+1,len(self.zeros)]
def make_ddt(self, saw_tooth=True, reversed_dir=False):
non_empty_zeros = filter(lambda x: len(x) > 0, self.zeros)
if len(non_empty_zeros) == 0:
print "Empty slice, nothing to visualize"
return
# print map(min, self.zeros)
min_zero = min(map(min, non_empty_zeros))
max_zero = max(map(max, non_empty_zeros))
height = int(np.ceil(max_zero - min_zero))+1
grid_height = len(self.zeros)
# ddt = np.zeros((height,len(self.zeros)))
ddt = np.zeros((grid_height,len(self.zeros)))
offset = int((grid_height - height) / 2.0)
for x in xrange(len(self.zeros)):
for zp in self.zeros[x]:
y = int(zp - min_zero+offset)
ddt[y,x] = 1
if saw_tooth:
for x in xrange(len(self.zeros)):
if reversed_dir:
last = -1
for y in reversed(xrange(grid_height)):
if ddt[y,x] == 1:
last = 0
ddt[y,x] = last
elif last >= 0:
last = last + 1
ddt[y,x] = last
else:
# make the no data regions white
ddt[y,x] = -1
else:
last = -1
for y in xrange(grid_height):
if ddt[y,x] == 1:
last = 0
ddt[y,x] = last
elif last >= 0:
last = last + 1
ddt[y,x] = last
else:
# make the no data regions white
ddt[y,x] = -1
ddt[ddt == -1] = np.max(ddt)
return ddt
def visualize():
return plt.imshow(np.sqrt(self.make_ddt()),cmap="gray")
# plt.show()
# print ddt #min_zero, max_zero, height
class CDDT(object):
""" Loads a serialized CDDT datastructure for visualization and manipulation """
def __init__(self, path):
print "Loading CDDT:", path
self.path = path
print "..opening file"
cddt_file = open(path, 'r')
print "..loading json"
cddt_raw = ujson.load(cddt_file)
if not "cddt" in cddt_raw:
print "Incorrectly formatted data, exiting."
return
cddt_raw = cddt_raw["cddt"]
print "..parsing"
self.lut_translations = np.array(cddt_raw["lut_translations"])
self.max_range = cddt_raw["max_range"]
self.theta_discretization = cddt_raw["theta_discretization"]
self.map = Map(cddt_raw["map"])
print "..loading slices"
self.slices = map(CDDTSlice, cddt_raw["compressed_lut"])
self.slices = self.slices[:int(len(self.slices)/2)]
# makes a histogram of number of elements in each LUT bin
def zeros_hist(self):
# print self.slices[0].zeros()
num_zeros = map(lambda x: x.num_zeros(), self.slices)
plt.hist(num_zeros)
plt.show()
# print list(itertools.chain.from_iterable(num_zeros))
# print num_zeros[0]
class SliceScroller(object):
def __init__(self, cddt):
# self.fig, (self.ax1,self.ax2) = plt.subplots(2, 1)
self.fig = plt.figure()
self.ax1 = plt.subplot(6,1,1)
self.ax2 = plt.subplot(6,1,2)
self.ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
self.ax2 = plt.subplot2grid((4, 1), (3, 0))
# ax3 = plt.subplot2grid((6, 1), (2, 0))
# ax4 = plt.subplot2grid((6, 1), (3, 0))
# ax5 = plt.subplot2grid((6, 1), (4, 0), rowspan=2)
# plt.subplot(6,1,3)
# plt.subplot(2,1,2)
# self.ax = ax
# self.fig = fig
self.ax1.set_title('use scroll wheel to navigate images')
self.cddt = cddt
self.ind = 2
self.fig.canvas.mpl_connect('scroll_event', self.onscroll)
self.ddts = [None]*len(self.cddt.slices)
# dims = np.array(map(lambda x: x.ddt_dims(), self.cddt.slices))
# max_dims = np.max(dims,axis=0)
# print (int(max_dims[1]),int(max_dims[0]))
# self.ddt = np.ones((max_dims[1],max_dims[0]))
# self.ddt = 255*np.random.rand(int(max_dims[0]),int(max_dims[1]))
# self.im = ax.imshow(self.ddt, cmap="gray")
self.update()
# self.get_viz()
# print self.ddt.shape
# self.im = ax.imshow(self.ddt, cmap="gray")
# self.im.axes.figure.canvas.draw()
def onscroll(self, evt):
print("Slice: %s Theta: %s" % (self.ind, self.cddt.slices[self.ind].theta))
self.ind = int((self.ind + evt.step) % len(self.cddt.slices))
self.update()
def update(self):
plt.tight_layout()
self.ax1.cla()
self.ax2.cla()
self.ax1.axis('off')
if not isinstance(self.ddts[self.ind], np.ndarray):
# if self.ddts[self.ind] == None:
self.ddts[self.ind] = np.sqrt(self.cddt.slices[self.ind].make_ddt(True)).transpose()
ys = map(len, self.cddt.slices[self.ind].zeros)
compression_factor = 2*self.cddt.map.width * self.cddt.map.height / (sum(ys))
self.ax1.set_title("DDT - Reconstructed from a slice of the PCDDT, compression factor: " + str(compression_factor))
self.ax1.set_ylabel('Theta = %s' % self.cddt.slices[self.ind].theta)
self.ax1.imshow(self.ddts[self.ind],cmap="gray",interpolation='nearest', aspect='auto')
self.ax2.set_title("Number of entries projected into each PCDDT bin")
self.ax2.plot(ys)
self.fig.canvas.draw()
# self.im.set_data(self.ddt)
# self.im.axes.figure.canvas.draw()
# ind = 0
# def scroll_slices(saw_tooth=True):
# fig = plt.figure()
# ddt = cddt.slices[10].make_ddt()
# # im = plt.imshow(np.sqrt(ddt), cmap="gray")
# im = plt.imshow(np.ones((100,100)), cmap="gray")
# def onscroll(evt):
# global ind
# print "Slice:", ind, "theta:", cddt.slices[ind].theta
# ind = int((ind + evt.step) % len(cddt.slices))
# ddt = cddt.slices[ind].make_ddt()
# im.set_data(ind*np.ones((100,100)))
# im.axes.figure.canvas.draw()
# # cddt.slices[0].visualize()
# # plt.show()
# fig.canvas.mpl_connect('scroll_event', onscroll)
# plt.show()
# generate LUT slice vs DDT graphics
if __name__ == '__main__':
ddt_img = scipy.misc.imread("./paper/ddt_neg_pi_over_4_no_pow.png")
lut_img = scipy.misc.imread("./paper/lut_slice_neg_pi_over_4.png")
ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
ax2 = plt.subplot2grid((4, 1), (3, 0))
# plt.tight_layout()
row_num = 700
ax1.axis('off')
ax2.set_ylim([0,200])
ax2.set_xlim([0,ddt_img.shape[1]])
ddt_img_color = np.zeros((ddt_img.shape[0], ddt_img.shape[1], 3), dtype=np.uint8)
ddt_img_color[:, :, :] = ddt_img[:, :, np.newaxis]
ax2.plot(ddt_img[row_num,:])
ddt_img_color[row_num-2:row_num+2,:,:] = (0,0,255)
ddt_img_color[:3,:,:] = (0,0,0)
ddt_img_color[-3:,:,:] = (0,0,0)
ax1.imshow(ddt_img_color)
plt.figure()
ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
ax2 = plt.subplot2grid((4, 1), (3, 0))
# plt.tight_layout()
row_num = 600
ax1.axis('off')
ax2.set_ylim([0,250])
ax2.set_xlim([0,lut_img.shape[1]])
ax2.plot(lut_img[row_num,:])
lut_img_color = np.zeros((lut_img.shape[0], lut_img.shape[1], 3), dtype=np.uint8)
lut_img_color[:, :, :] = lut_img[:, :, np.newaxis]
lut_img_color[row_num-2:row_num+2,:,:] = (0,0,255)
lut_img_color[:3,:,:] = (0,0,0)
lut_img_color[-3:,:,:] = (0,0,0)
ax1.imshow(lut_img_color, cmap="gray")
# plt.ylim([0,250])
# plt.plot(lut_img[600,:])
# plt.figure()
# lut_img[600,:] = 255
# plt.imshow(lut_img, cmap="gray")
plt.show()
exit()
if __name__ == '__main__':
args = parser.parse_args()
cddt = CDDT(args.path)
# plt.imshow(np.sqrt(cddt.slices[3].make_ddt(reversed_dir=True).transpose()), cmap="gray")
w = 1350
img = np.power(cddt.slices[3].make_ddt(reversed_dir=True).transpose()[120:120+w,:w],0.7)
# img = np.power(cddt.slices[3].make_ddt(reversed_dir=True).transpose()[120:120+w,:w],1.0)
plt.imshow(img, cmap="gray")
# scipy.misc.imsave("./paper/ddt_neg_pi_over_4_no_pow.png",img)
# plt.imshow(cddt.slices[3].make_ddt(reversed_dir=True), cmap="gray")
plt.show()
# X = np.random.rand(20, 20, 40)
# tracker = SliceScroller(cddt)
# plt.show()
# You probably won't need this if you're embedding things in a tkinter plot...
# plt.ion()
# fig, ax = plt.subplots(1, 1)
# # X = numpy.random.rand(20, 20, 40)
# scroller = SliceScroller(ax,fig, cddt)
# fig.canvas.mpl_connect('scroll_event', scroller.onscroll)
# plt.show()
# SliceScroller(cddt)
# scroll_slices()
# cddt.slices[0].visualize()
# cddt.map.visualize()
# cddt.zeros_hist()
# from __future__ import print_function
# import numpy as np
# import matplotlib.pyplot as plt