Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Fine-tuning Example #17

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 73 additions & 0 deletions examples/finetune/finetune_evo_on_human_cds.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import transformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig, DataCollatorForLanguageModeling
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["WANDB_DISABLED"] = "true"

model_name = 'togethercomputer/evo-1-8k-base'

model_config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model_config.use_cache = False

model = AutoModelForCausalLM.from_pretrained(
model_name,
config=model_config,
trust_remote_code=True,
device_map={"":0},
torch_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = "X"

for p in model.parameters():
p.requires_grad = False

for p in model.backbone.blocks[-1].parameters():
p.requires_grad = True

from datasets import load_dataset

dataset = load_dataset("gonzalobenegas/human-genome-cds")
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

def preprocess_function(sample):
return tokenizer(sample['seq'], padding="longest", truncation=True, max_length=3000)

tokenized_ds = dataset.map(
preprocess_function,
batched=True,
num_proc=12,
)

from transformers import AutoConfig, AutoModelForCausalLM, TrainingArguments, Trainer

training_args = TrainingArguments(
output_dir="./evo_results",
evaluation_strategy="epoch",
learning_rate=2e-5,
weight_decay=0.01,
gradient_accumulation_steps=2,
per_device_train_batch_size=4,
warmup_steps=10,
max_steps=100, # only a demo
logging_steps=10,
eval_steps=100,
logging_strategy="steps",
bf16=True
# fp16=True, # This didn't work.
)


trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_ds["train"],
eval_dataset=tokenized_ds["test"],
data_collator=data_collator,

)

trainer.train()