Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor apply_final_fixup #243

Merged
merged 4 commits into from
Nov 15, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 87 additions & 64 deletions xl2times/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -2877,86 +2877,109 @@ def apply_final_fixup(
model: TimesModel,
) -> dict[str, DataFrame]:

veda_process_sets = tables["VedaProcessSets"]
veda_process_sets = tables["VedaProcessSets"][["sets", "process"]]
reg_com_flows = tables["ProcessTopology"].drop(columns="io")
reg_com_flows.drop_duplicates(inplace=True, ignore_index=True)
df = tables[Tag.fi_t]

# Fill other_indexes for COST
cost_mapping = {"MIN": "IMP", "EXP": "EXP", "IMP": "IMP"}
i = (df["attribute"] == "COST") & df["process"].notna()
if any(i):
for process in df[i]["process"].unique():
veda_process_set = (
veda_process_sets["sets"]
.loc[veda_process_sets["process"] == process]
.unique()
cost_index = (df["attribute"] == "COST") & df["process"].notna()

if any(cost_index):
processes = set(df[cost_index]["process"].unique())
# Index of IRE processes and their IRE sets specification
sets_index = veda_process_sets["process"].isin(processes) & veda_process_sets[
"sets"
].isin(cost_mapping.keys())

ire_processes = set(veda_process_sets["process"][sets_index].unique())
other_processes = processes - ire_processes

if other_processes:
logger.warning(
f"COST won't be processed as IRE_PRICE for {other_processes}, because they are not in IMP/EXP/MIN"
)

if any(ire_processes):
# Ensure only one IRE set is specified per process
subst_df = veda_process_sets[sets_index].drop_duplicates(
subset="process", keep="last"
)
index = cost_index & df["process"].isin(ire_processes)
df.loc[index, "other_indexes"] = df.loc[index, "process"].replace(
subst_df.set_index("process")["sets"].replace(cost_mapping).to_dict()
)
if veda_process_set.shape[0]:
df.loc[i & (df["process"] == process), "other_indexes"] = cost_mapping[
veda_process_set[0]
]
else:
logger.warning(
f"COST won't be processed as IRE_PRICE for {process}, because it is not in IMP/EXP/MIN"
)

# Use CommName to store the active commodity for EXP / IMP
i = df["attribute"].isin({"COST", "IRE_PRICE"})
if any(i):
i_exp = i & (df["other_indexes"] == "EXP")
index = df["attribute"].isin({"COST", "IRE_PRICE"})
if any(index):
i_exp = index & (df["other_indexes"] == "EXP")
df.loc[i_exp, "commodity"] = df.loc[i_exp, "commodity-in"]
i_imp = i & (df["other_indexes"] == "IMP")
i_imp = index & (df["other_indexes"] == "IMP")
df.loc[i_imp, "commodity"] = df.loc[i_imp, "commodity-out"]

# Fill CommName for COST (alias of IRE_PRICE) if missing
i = (df["attribute"] == "COST") & df["commodity"].isna()
if any(i):
df.loc[i, "commodity"] = df[i].apply(
lambda row: ",".join(
reg_com_flows.loc[
(reg_com_flows["region"] == row["region"])
& (reg_com_flows["process"] == row["process"]),
"commodity",
].unique()
),
axis=1,
i_com_na = (df["attribute"] == "COST") & df["commodity"].isna()
if any(i_com_na):
comm_rp = reg_com_flows.groupby(["region", "process"]).agg(set)
comm_rp["commodity"] = comm_rp["commodity"].str.join(",")
df.set_index(["region", "process"], inplace=True)
i_cost = df["attribute"] == "COST"
df.loc[i_cost, "commodity"] = df["commodity"][i_cost].fillna(
comm_rp["commodity"].to_dict()
)
df.reset_index(inplace=True)

# Handle STOCK specified for a single year
i = (df["attribute"] == "STOCK") & df["process"].notna()
# Temporary solution to include only processes defined in BASE
i_vt = i & (df["source_filename"].str.contains("VT_", case=False))
if any(i):
extra_rows = []
for region in df[i]["region"].unique():
i_reg = i & (df["region"] == region)
for process in df[(i_reg & i_vt)]["process"].unique():
i_reg_prc = i_reg & (df["process"] == process)
if any(i_reg_prc):
extra_rows.append(["NCAP_BND", region, process, "UP", 0, 2])
# TODO: TIMES already handles this. Drop?
if len(df[i_reg_prc]["year"].unique()) == 1:
year = df[i_reg_prc]["year"].unique()[0]
i_attr = (
df["attribute"].isin({"NCAP_TLIFE", "LIFE"})
& (df["region"] == region)
& (df["process"] == process)
)
if any(i_attr):
lifetime = df[i_attr]["value"].unique()[-1]
else:
lifetime = 30
extra_rows.append(
["STOCK", region, process, "", year + lifetime, 0]
)
if len(extra_rows) > 0:
cols = ["attribute", "region", "process", "limtype", "year", "value"]
df = pd.concat(
[
df,
pd.DataFrame(extra_rows, columns=cols),
]
stock_index = (df["attribute"] == "STOCK") & df["process"].notna()
if any(stock_index):
# Temporary solution to include only processes defined in BASE
i_vt = stock_index & (df["source_filename"].str.contains("VT_", case=False))
# Create (region, process) index for data defined in vt
i_df_rp_vt = df[i_vt].set_index(["region", "process"]).index.drop_duplicates()
# Create extra rows with NCAP_BND
ncap_bnd_data = {
"attribute": "NCAP_BND",
"limtype": "UP",
"year": 0,
"value": 2,
}
ncap_bnd_rows = pd.DataFrame(ncap_bnd_data, index=i_df_rp_vt).reset_index()
# Create df list to concatenate later on
df_list = [df, ncap_bnd_rows]
# Stock indexed by process/region
cols = ["region", "process", "year"]
df_rp = (
df[stock_index]
.drop_duplicates(subset=cols, keep="last")
.set_index(["region", "process"])
)
# Index of region/process with STOCK specified only once
i_single_stock = ~df_rp.index.duplicated(keep=False)

# TODO: TIMES already handles this. Drop?
if any(i_single_stock):
default_life = 30
life_rp = (
df[df["attribute"].isin({"NCAP_TLIFE", "LIFE"})]
.drop_duplicates(subset=["region", "process"], keep="last")
.set_index(["region", "process"])["value"]
)
stock_rows = df_rp[["attribute", "year"]][i_single_stock].copy()
stock_rows = stock_rows.merge(
life_rp, how="left", left_index=True, right_index=True
)
# Use default if lifetime not specified
stock_rows.loc[stock_rows["value"].isna(), "value"] = default_life
# Calculate the year in which STOCK is zero
stock_rows["year"] = stock_rows["year"] + stock_rows["value"]
# Specify stock value zero
stock_rows["value"] = 0
stock_rows.reset_index(inplace=True)
df_list.append(stock_rows)

df = pd.concat(df_list)

tables[Tag.fi_t] = df

Expand Down
Loading