Skip to content

Commit

Permalink
discojs-core/models: add gpt
Browse files Browse the repository at this point in the history
Closes: #641
Closes: #619
Closes: #600
  • Loading branch information
peacefulotter authored and tharvik committed Mar 18, 2024
1 parent dbdb764 commit 4c95be2
Show file tree
Hide file tree
Showing 12 changed files with 1,140 additions and 6 deletions.
16 changes: 16 additions & 0 deletions discojs/discojs-core/src/informant/training_informant/base.ts
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ export abstract class Base {
protected readonly trainingGraphInformant = new GraphInformant()
protected readonly validationGraphInformant = new GraphInformant()

private _losses = List<number>()

// statistics
protected currentRound = 0
protected currentNumberOfParticipants = 0
Expand Down Expand Up @@ -71,6 +73,20 @@ export abstract class Base {
return this.validationGraphInformant.accuracy()
}

set loss (loss: number | undefined) {
if (loss === undefined) throw new Error('loss is undefined')
this._losses = this._losses.push(loss)
}

get loss (): number | undefined {
return this._losses.last()
}

/** return loss of each round */
get losses (): List<number> {
return this._losses
}

trainingAccuracyData (): List<number> {
return this.trainingGraphInformant.data()
}
Expand Down
23 changes: 23 additions & 0 deletions discojs/discojs-core/src/models/gpt/LICENSE.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
MIT License

Copyright (c) 2023 Nathan Maire
Copyright (c) 2023 lukemovement
Copyright (c) 2023 Anton Zemlyansky

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
77 changes: 77 additions & 0 deletions discojs/discojs-core/src/models/gpt/config.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
type ModelType =
| 'gpt2'
| 'gpt2-medium'
| 'gpt2-large'
| 'gpt2-xl'
| 'gpt-mini'
| 'gpt-micro'
| 'gpt-nano'

interface ModelSize {
nLayer?: number
nHead?: number
nEmbd?: number
}

export interface GPTConfig {
lr: number
batchSize: number
blockSize: number
vocabSize: number
evaluate?: boolean
maxEvalBatches?: number
evaluateEvery?: number
epochs?: number
maxIter?: number
weightDecay?: number
verbose?: 0 | 1
bias?: boolean
debug?: boolean
dropout?: number
residDrop?: number
embdDrop?: number
tokEmb?: boolean
lmHead?: boolean
modelType: ModelType
}

export const DEFAULT_CONFIG: Required<GPTConfig> = {
lr: 0.001,
weightDecay: 0,
batchSize: 2,
epochs: 9999,
maxIter: 10_000,
verbose: 0,
modelType: 'gpt-nano',
evaluate: true,
maxEvalBatches: 12,
evaluateEvery: 100,
blockSize: 128,
vocabSize: 50258,
bias: true,
debug: false,
dropout: 0.2,
residDrop: 0.2,
embdDrop: 0.2,
tokEmb: true,
lmHead: true
}

export function getModelSizes (modelType: ModelType): Required<ModelSize> {
switch (modelType) {
case 'gpt2':
return { nLayer: 12, nHead: 12, nEmbd: 768 }
case 'gpt2-medium':
return { nLayer: 24, nHead: 16, nEmbd: 1024 }
case 'gpt2-large':
return { nLayer: 36, nHead: 20, nEmbd: 1280 }
case 'gpt2-xl':
return { nLayer: 48, nHead: 25, nEmbd: 1600 }
case 'gpt-mini':
return { nLayer: 6, nHead: 6, nEmbd: 192 }
case 'gpt-micro':
return { nLayer: 4, nHead: 4, nEmbd: 128 }
case 'gpt-nano':
return { nLayer: 3, nHead: 3, nEmbd: 48 }
}
}
54 changes: 54 additions & 0 deletions discojs/discojs-core/src/models/gpt/evaluate.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import tf from '@tensorflow/tfjs'

export default async function evaluate (
model: tf.LayersModel,
dataset: tf.data.Dataset<{ xs: tf.Tensor, ys: tf.Tensor }>
): Promise<Record<'acc' | 'val_acc' | 'val_loss' | 'val_perplexity', number>> {
let datasetSize = 0
let totalLoss = 0
const acc: [number, number] = [0, 0]

await dataset.map(({ xs, ys }) => {
const logits = model.apply(xs)
if (Array.isArray(logits)) {
throw new Error('model outputed many tensor')
}
if (logits instanceof tf.SymbolicTensor) {
throw new Error('model outputed symbolic tensor')
}
xs.dispose()

return { logits, ys }
}).mapAsync(async ({ logits, ys }) => {
const loss = (await tf.losses.softmaxCrossEntropy(ys, logits).array())
if (typeof loss !== 'number') {
throw new Error('got multiple loss')
}

const accTensor = tf.metrics.categoricalAccuracy(ys, logits)
const accSize = accTensor.shape.reduce((l, r) => l * r, 1)
const accSum = accTensor.sum()
const accSummed = await accSum.array()
if (typeof accSummed !== 'number') {
throw new Error('got multiple accuracy sum')
}

tf.dispose([ys, logits, accTensor, accSum])

return { loss, accSummed, accSize }
}).forEachAsync(({ loss, accSummed, accSize }) => {
datasetSize += 1
totalLoss += loss
acc[0] += accSummed
acc[1] += accSize
})

const loss = totalLoss / datasetSize

return {
val_loss: loss,
val_perplexity: Math.exp(loss),
acc: acc[0] / acc[1],
val_acc: acc[0] / acc[1]
}
}
144 changes: 144 additions & 0 deletions discojs/discojs-core/src/models/gpt/index.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
/**
* this code is taken from gpt-tfjs with modifications from @peacefulotter and @lukemovement
**/

import tf from '@tensorflow/tfjs'

import { WeightsContainer } from '../..'
import type { Dataset } from '../../dataset'
import { Sink } from '../../utils/event_emitter'

import type { EpochLogs, Prediction, Sample } from '../model'
import { Model } from '../model'

import { GPTLMHeadModel } from './model'

// TODO too big config
interface Config {
modelType: 'gpt-nano'
epochs: number // TODO mv to Task
maxIter: number
batchSize: number
blockSize: number
lr: number
vocabSize: number
maxEvalBatches: number
}

export class GPT extends Model {
private readonly model: GPTLMHeadModel

private static readonly batchSize = 4
private static readonly blockSize = 128
private static readonly vocabSize = 50258

constructor () {
super()

// TODO sensible defaults?
const config: Config = {
modelType: 'gpt-nano',
epochs: 1,
maxIter: 2,
batchSize: GPT.batchSize,
blockSize: GPT.blockSize,
lr: 0.001,
vocabSize: GPT.vocabSize,
maxEvalBatches: 1
}

this.model = new GPTLMHeadModel(config)
}

override get weights (): WeightsContainer {
return new WeightsContainer(this.model.weights.map((w) => w.read()))
}

override set weights (ws: WeightsContainer) {
this.model.setWeights(ws.weights)
}

// takes a stream of two bytes followed by a token ID
private convertCharDataset (dataset: Dataset): tf.data.Dataset<{ xs: tf.Tensor2D, ys: tf.Tensor3D }> {
const batchSize = 4
const sampleSize = GPT.blockSize + 1
const chunkSize = sampleSize * batchSize * 2

function toUInt16 (low: number, high: number): number {
low &= 0xff
high &= 0xff
return (high << 8) | low
}

// TODO add support for small last batch
return dataset.batch(chunkSize, false).mapAsync(async (chunk) => {
if (!(chunk instanceof tf.Tensor)) {
throw new Error('chunk is not a Tensor')
}
if (chunk.shape.length !== 2 || chunk.shape[1] !== 1) {
throw new Error('dataset is not a only char')
}

const buffer = await chunk.buffer()

const xs = tf.buffer<tf.Rank.R2, 'int32'>([batchSize, GPT.blockSize], 'int32')
const ys = tf.buffer<tf.Rank.R3, 'int32'>([batchSize, GPT.blockSize, GPT.vocabSize], 'int32')

for (let i = 0; i < batchSize; i++) {
for (let j = 0; j < sampleSize; j++) {
const idx = (i * sampleSize + j) * 2
const low = buffer.get(idx)
const high = buffer.get(idx + 1)
const token = toUInt16(low, high)
if (j < sampleSize - 1) xs.set(token, i, j)
if (j > 0) ys.set(1, i, j - 1, token)
}
}

return { xs: xs.toTensor(), ys: ys.toTensor() }
})
}

override async * train (
trainingData: Dataset,
validationData?: Dataset,
epochs = 1,
tracker = new Sink()
): AsyncGenerator<EpochLogs, void> {
for (let i = 0; i < epochs; i++) {
let logs: tf.Logs | undefined

await this.model.fitDataset(
this.convertCharDataset(trainingData), {
epochs: 1,
validationData: validationData !== undefined ? this.convertCharDataset(validationData) : validationData,
callbacks: {
onEpochEnd: (_, cur) => { logs = cur },
onBatchBegin: () => { tracker.emit('batchBegin', undefined) },
onBatchEnd: () => { tracker.emit('batchEnd', undefined) }
}
})

yield logs
}
}

override async predict (input: Sample): Promise<Prediction> {
const ret = this.model.predict(input)
if (Array.isArray(ret)) {
throw new Error('prediction yield many Tensors but should have only returned one')
}

return ret
}

static deserialize (weights: WeightsContainer): Model {
const model = new GPT()
model.weights = weights
return model
}

serialize (): WeightsContainer {
return this.weights
}
}
Loading

0 comments on commit 4c95be2

Please sign in to comment.