-
Notifications
You must be signed in to change notification settings - Fork 7
Submission Scores
Adrodoc edited this page Dec 13, 2019
·
11 revisions
This page serves for sharing and documenting different training approaches.
- Score: 0.99 - LEAKS
- Model: LightGBM 2-Fold
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse" }
- Training: 500 rds, no early stopping
- Features: NO OHE/Circular; Dropped Wind cols, seapressure, month;
- Score: 1.06
- Model: LightGBM 4-Fold
- Parameters:
lgbm_params:
objective: regression
boosting: dart
learning_rate: 0.05
bagging_fraction: 0.9484361954387427
feature_fraction: 0.8748759225130817
min_data_in_leaf: 30
min_split_gain: 0.2335888161661162
num_leaves: 3480
reg_alpha: 0.2748100019294575
reg_lambda: 3.8233940707366925
metric: rmse
verbosity: -1
num_boost_round: 750
verbose_eval: 50
splits_for_cv: 4
- Training: inf rds, 50 rds early stopping
- Features: NO OHE/Circular; Dropped Wind cols, seapressure, month; results of hyperopt
- Score: 1.07
- Model: LightGBM 4-Fold
- Parameters:
lgbm_params:
objective: regression
boosting: gbdt
learning_rate: 0.05
bagging_fraction: 0.7604703318859309
feature_fraction: 0.9556886502673504
min_data_in_leaf: 15
min_split_gain: 0.4673249117301946
num_leaves: 3480
reg_alpha: 3.9145881110580314
reg_lambda: 1.2467155815765916
metric: rmse
verbosity: -1
num_boost_round: 99999
early_stopping_rounds: 50
verbose_eval: 50
splits_for_cv: 4
- Training: inf rds, 50 rds early stopping
- Features: NO OHE/Circular; Dropped Wind cols, seapressure, month; results of hyperopt
- Score: 1.08
- Model: CatBoost 4-Fold
- Parameters:
ctb_params:
iterations: 99999
learning_rate: 0.05
reg_lambda: 2
loss_function: RMSE
task_type: GPU
ctb_early_stopping_rounds: 20
ctb_verbose_eval: 25
ctb_splits_for_cv: 4
- Training: inf rds, 20 rds early stopping
- Features: NO OHE/Circular; Dropped Wind cols, seapressure, month;
- Score: 1.08
- Model: LightGBM 3-Fold
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 1250, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse" }
- Training: 1000 rds, 100rds early stopping
- Features: NO OHE/Circular; Dropped Wind cols, seapressure, month;
- Score: 1.08
- Average Eval Loss: 0.847
- Average Train Loss: 0.693
- Commit: 45a3e80
- Model: LightGBM
- Mode: cv (3 folds)
- Training: 1000 rds
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse", "verbosity": -1 }
Output: https://github.com/energeeks/ashrae-energy-prediction/issues/57#issuecomment-560019127
- Score: 1.09
- Average Eval Loss: 0.755
- Average Train Loss: 0.742
- Commit: 797c0f9
- Model: LightGBM
- Mode: daywise_cv (2 folds)
- Training: 500 rds
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse", "verbosity": -1 }
- Output: https://github.com/energeeks/ashrae-energy-prediction/issues/44#issuecomment-560031171
- Score: 1.10
- Average Eval Loss: 0.575
- Average Train Loss: 0.418
- Commit: 826755b
- Model: LGBM
- Mode: daywise_cv
- With
hourofyear
column - Parameters:
lgbm_params:
objective: regression
boosting: gbdt
learning_rate: 0.05
bagging_fraction: 0.7604703318859309
feature_fraction: 0.9556886502673504
min_data_in_leaf: 15
min_split_gain: 0.4673249117301946
num_leaves: 3480
reg_alpha: 3.9145881110580314
reg_lambda: 1.2467155815765916
metric: rmse
verbosity: -1
lgbm_num_boost_round: 999999
lgbm_early_stopping_rounds: 50
lgbm_verbose_eval: 25
lgbm_splits_for_cv: 2
- Score: 1.10
- Model: LightGBM 2-Fold
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse" }
- Training: 500 rds, no early stopping
- Features: NO OHE/Circular; Dropped Wind cols, seapressure, month;
- Score: 1.11
- Model: LightGBM 2-Fold
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse" }
- Training: 2000/500 rds, no early stopping (2k rds better position in lb)
- Features: NO OHE/Circular; Dropped Wind cols, seapressure;
- Score: 1.12
- Model: LightGBM 3-Fold
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse" }
- Training: 1000 rds / 100 early stopping
- Features: NO OHE/Circular; Dropped Wind cols, seapressure;
- Score: 1.30
- Average Eval Loss: 0.890
- Average Train Loss: 0.831
- Commit: e2d9134 (split using weekofyear instead of dayofyear)
- Model: LightGBM
- Mode: daywise_cv
- Training: 500 rds, no early stopping
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse", "verbosity": -1 }
Output: https://github.com/energeeks/ashrae-energy-prediction/issues/44#issuecomment-557613284
- Score: 1.31
- Average Eval Loss: 0.878
- Average Train Loss: 0.845
- Commit: 3bb1a7a
- Model: LightGBM
- Mode: daywise_cv
- Training: 500 rds, no early stopping
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse", "verbosity": -1 }
Output: https://github.com/energeeks/ashrae-energy-prediction/issues/44#issuecomment-557535405
- Score: 1.36
- Model: LightGBM BY METER
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse" }
- Training: 500 rds, no early stopping
- Features: NO OHE/Circular; Dropped: Wind cols, seapressure;
- Score: 2.61
- Model: LightGBM 2-Fold - Training per Building
- Parameters:
params = { "objective": "regression", "boosting": "gbdt", "num_leaves": 40, "learning_rate": 0.05, "feature_fraction": 0.85, "reg_lambda": 2, "metric": "rmse" }
- Training: 500 rds, no early stopping
- Features: NO OHE/Circular; Dropped Wind cols, seapressure, month, site_id, building_id;