-
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
updated math and quantum_resonance_circuit
- Loading branch information
Showing
2 changed files
with
116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from .quantum_system import QuantumSystem | ||
from ..utils.helpers import phi_pi_transition, generate_harmony_vector, state_to_dna, count_valid_codons, calculate_gc_content, calculate_base_balance | ||
|
||
class HarmonicBalancer: | ||
def __init__(self, num_qubits, max_iterations, harmony_memory_size, objective_function=None, convergence_threshold=1e-6): | ||
self.num_qubits = num_qubits | ||
self.max_iterations = max_iterations | ||
self.harmony_memory_size = harmony_memory_size | ||
self.harmony_memory = [generate_harmony_vector(num_qubits) for _ in range(harmony_memory_size)] | ||
self.best_solution = None | ||
self.best_score = -np.inf | ||
self.history = {'scores': [], 'states': []} | ||
self.quantum_system = QuantumSystem(num_qubits) | ||
self.objective_function = objective_function if objective_function else self.default_objective_function | ||
self.convergence_threshold = convergence_threshold | ||
|
||
def default_objective_function(self, vector, param=1): | ||
return np.sum(vector) * param | ||
|
||
def run_experiment(self): | ||
for iteration in range(self.max_iterations): | ||
new_harmony_vector = self.generate_new_harmony(transition_constant=0.1) | ||
evolved_state = new_harmony_vector | ||
score = self.objective_function(evolved_state) | ||
self.update_harmony_memory(new_harmony_vector, evolved_state, score) | ||
self.history['scores'].append(score) | ||
if self.check_convergence(): | ||
break | ||
|
||
def generate_new_harmony(self, transition_constant): | ||
# Generate a new harmony vector based on the transition constant | ||
return generate_harmony_vector(self.num_qubits) | ||
|
||
def update_harmony_memory(self, new_vector, evolved_state, score): | ||
# Update the harmony memory with the new vector and score | ||
if score > self.best_score: | ||
self.best_score = score | ||
self.best_solution = new_vector | ||
self.harmony_memory.append(new_vector) | ||
if len(self.harmony_memory) > self.harmony_memory_size: | ||
self.harmony_memory.pop(0) | ||
|
||
def check_convergence(self): | ||
# Check if the algorithm has converged | ||
if len(self.history['scores']) < 2: | ||
return False | ||
return abs(self.history['scores'][-1] - self.history['scores'][-2]) < self.convergence_threshold | ||
|
||
def apply_golden_harmony(self, R, F, E): | ||
# Apply the Golden Harmony Theory Integration | ||
return np.sqrt((R * F**2) + E**2) | ||
|
||
def apply_resonance_condition(self, F0, k, m, omega, b): | ||
# Apply the Resonance Condition | ||
return F0 / np.sqrt((k - m * omega**2)**2 + (b * omega)**2) | ||
|
||
def apply_wave_interference(self, y1, y2): | ||
# Apply the Wave Interference | ||
return y1 + y2 | ||
|
||
def plot_convergence(self): | ||
plt.plot(self.history['scores']) | ||
plt.title('Convergence of Harmonic Balancer Algorithm') | ||
plt.xlabel('Iteration') | ||
plt.ylabel('Best Score') | ||
plt.grid(True) | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters