Skip to content

Commit

Permalink
merge conflict solved
Browse files Browse the repository at this point in the history
  • Loading branch information
dvro committed Jul 4, 2014
2 parents 7f1bd10 + c73e9fb commit 2671a06
Show file tree
Hide file tree
Showing 5 changed files with 320 additions and 24 deletions.
134 changes: 134 additions & 0 deletions examples/plot_generation_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-

"""
==============================================
Prototype Selection and Generation Comparision
==============================================
A comparison of a several prototype selection and generation algorithms in
the project on synthetic datasets.
The point of this example is to illustrate the nature of decision boundaries
after applying instance reduction techniques.
This should be taken with a grain of salt, as the intuition conveyed by
these examples does not necessarily carry over to real datasets.
In particular in high dimensional spaces data can more easily be separated
linearly and the simplicity of classifiers such as naive Bayes and linear SVMs
might lead to better generalization.
The plots show training points in solid colors and testing points
semi-transparent.
The lower right shows:
- S: score on the traning set.
- R: reduction ratio.
License: BSD 3 clause
"""

print(__doc__)


import numpy as np
import pylab as pl
from matplotlib.colors import ListedColormap
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from protopy.selection.enn import ENN
from protopy.selection.cnn import CNN
from protopy.selection.renn import RENN
from protopy.selection.allknn import AllKNN
from protopy.selection.tomek_links import TomekLinks
from protopy.generation.sgp import SGP, SGP2, ASGP

import utils

h = .02 # step size in the mesh

names = ["KNN", "SGP", "SGP2", "ASGP"]

r_min, r_mis = 0.15, 0.15

classifiers = [
KNeighborsClassifier(1),
SGP(r_min=r_min, r_mis=r_mis),
SGP2(r_min=r_min, r_mis=r_mis),
ASGP(r_min=r_min, r_mis=r_mis)]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)

rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]

figure = pl.figure(figsize=(27, 9))
i = 1
# iterate over datasets
for ds in datasets:
# preprocess dataset, split into training and test part
X, y = ds
X = StandardScaler().fit_transform(X)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5

y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))

X, y = utils.generate_imbalance(X, y, positive_label=1, ir=1.5)
# just plot the dataset first
cm = pl.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = pl.subplot(len(datasets), len(classifiers) + 1, i)
# Plot the training points
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm_bright)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1

# iterate over classifiers
for name, clf in zip(names, classifiers):
ax = pl.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(np.array(X), np.array(y))

red = clf.reduction_ if hasattr(clf, 'reduction_') else 0.0
if hasattr(clf, 'reduction_'):
X_prot, y_prot = clf.X_, clf.y_
else:
X_prot, y_prot = X, y


# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

# Plot also the prototypes
ax.scatter(X_prot[:, 0], X_prot[:, 1], c=y_prot, cmap=cm_bright)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, 'R:' + ('%.2f' % red).lstrip('0'),
size=15, horizontalalignment='right')
i += 1

figure.subplots_adjust(left=.02, right=.98)
pl.show()
29 changes: 5 additions & 24 deletions examples/plot_imbalanced_pg_comparision.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@
from protopy.selection.tomek_links import TomekLinks
from protopy.generation.sgp import SGP, SGP2, ASGP

import utils as utils

h = .02 # step size in the mesh

names = ["KNN", "SGP", "SGP2", "ASGP"]
Expand All @@ -46,7 +48,7 @@
KNeighborsClassifier(3),
SGP(r_min=0.2, r_mis=0.05),
SGP2(r_min=0.2, r_mis=0.05),
ASGP(r_min=0.2, r_mis=0.05)]
ASGP(r_min=0.2, r_mis=0.05, pos_class=1)]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
Expand All @@ -60,34 +62,13 @@
linearly_separable
]

def random_subset(iterator, k):
result = iterator[:k]
i = k
tmp_it = iterator[k:]
for item in tmp_it:
i = i + 1
s = int(np.random.random() * i)
if s < k:
result[s] = item
return result

def generate_imbalance(X, y, positive_label=1, ir=2):
mask = y == positive_label
seq = np.arange(y.shape[0])[mask]
k = float(sum(mask))/ir
idx = np.asarray(random_subset(seq, int(k)))
mask = ~mask
mask[idx] = True
return X[mask], y[mask]


figure = pl.figure(figsize=(27, 9))
i = 1
# iterate over datasets
for ds in datasets:
# preprocess dataset, split into training and test part
X, y = ds
X, y = generate_imbalance(X, y)
X, y = utils.generate_imbalance(X, y)

X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
Expand All @@ -114,7 +95,7 @@ def generate_imbalance(X, y, positive_label=1, ir=2):
# iterate over classifiers
for name, clf in zip(names, classifiers):
ax = pl.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
clf.fit(np.array(X_train), np.array(y_train))

y_pred = clf.predict(X_test)
fp_rate, tp_rate, thresholds = roc_curve(
Expand Down
File renamed without changes.
156 changes: 156 additions & 0 deletions examples/tmp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-

"""
==============================================
Prototype Selection and Generation Comparision
==============================================
A comparison of a several prototype selection and generation algorithms in
the project on synthetic datasets.
The point of this example is to illustrate the nature of decision boundaries
after applying instance reduction techniques.
This should be taken with a grain of salt, as the intuition conveyed by
these examples does not necessarily carry over to real datasets.
In particular in high dimensional spaces data can more easily be separated
linearly and the simplicity of classifiers such as naive Bayes and linear SVMs
might lead to better generalization.
The plots show training points in solid colors and testing points
semi-transparent.
The lower right shows:
- S: score on the traning set.
- R: reduction ratio.
License: BSD 3 clause
"""

print(__doc__)


import numpy as np
import pylab as pl
from matplotlib.colors import ListedColormap
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from protopy.selection.enn import ENN
from protopy.selection.cnn import CNN
from protopy.selection.renn import RENN
from protopy.selection.allknn import AllKNN
from protopy.selection.tomek_links import TomekLinks
from protopy.generation.sgp import SGP, SGP2, ASGP

h = .02 # step size in the mesh

figure = pl.figure(figsize=(27,9))

names = ["KNN", "SGP", "SGP2", "ASGP"]
classifiers = [
KNeighborsClassifier(1),
SGP(r_min=0.05, r_mis=0.05),
SGP2(r_min=0.05, r_mis=0.05),
ASGP(r_min=0.05, r_mis=0.05)]


def get_datasets():
mu1 = [4, 5]
si1 = [[0.75, 0.25], [0.25, 0.75]]

mu2 = [5, 5]
si2 = [[0.25, 0.75], [0.75, 0.25]]

samples = 100

X1 = np.random.multivariate_normal(
np.asarray(mu1), np.asarray(si1), samples)
X2 = np.random.multivariate_normal(
np.asarray(mu2), np.asarray(si2), samples)
X = np.vstack((X1, X2))
y = np.asarray([0] * samples + [1] * samples)

z = zip(X, y)
np.random.shuffle(z)
X, y = zip(*z)
X, y = np.asarray(X), np.asarray(y)

normal_dists = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)

rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0)]
# make_circles(noise=0.2, factor=0.5, random_state=1),
# linearly_separable,
# ]
return datasets



datasets = get_datasets()

i = 0
for ds in datasets:
X, y = ds
X = StandardScaler().fit_transform(X)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))

cm = pl.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = pl.subplot(len(datasets), len(classifiers) + 1, i)
# Plot the training points
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm_bright)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i = i + 1


for name, clf in zip(names, classifiers):
ax = pl.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X, y)
red = clf.reduction_ if hasattr(clf, 'reduction_') else 0.0

X_prot, y_prot = X, y
if hasattr(clf, 'reduction_'):
X_prot, y_prot = clf.X_, clf.y_

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

# Plot points
ax.scatter(X_prot[:, 0], X_prot[:, 1], c=y_prot, cmap=cm_bright)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, 'RED:' + ('%.2f' % red).lstrip('0'),
size=15, horizontalalignment='right')
i += 1

figure.subplots_adjust(left=.02, right=.98)
pl.show()




25 changes: 25 additions & 0 deletions examples/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import numpy as np


def random_subset(iterator, k):
result = iterator[:k]
i = k
tmp_it = iterator[k:]
for item in tmp_it:
i = i + 1
s = int(np.random.random() * i)
if s < k:
result[s] = item
return result

def generate_imbalance(X, y, positive_label=1, ir=2):
mask = y == positive_label
seq = np.arange(y.shape[0])[mask]
k = float(sum(mask))/ir
idx = np.asarray(random_subset(seq, int(k)))
mask = ~mask
mask[idx] = True
return X[mask], y[mask]



0 comments on commit 2671a06

Please sign in to comment.