Machine learning researchers frequently need to experiment with different parameter configurations to fine-tune their models. Managing these configurations efficiently poses a significant challenge. To address this, we developed Ym2, a configuration management framework inspired by torchtune
Ym2 provides:
- Declaration of custom Python classes and parameters through
yaml
configuration files - Simple configuration overrides via command-line arguments
- Support for multiple experimental runs with different configurations
- Comprehensive experiment logging and management
We use Ym2 daily and continually improve and add more features
# Install the latest version
pip install ym2
# Change to sample directory
cd sample/
# Run hello world example
ym2 configs/config.yaml
# Override parameter `name`
ym2 configs/config.yaml name=X
# Execute sequentially with `name=X` and `name=Y`
ym2 configs/config.yaml name=X,Y
# Adding new parameters `x` and `y`
ym2 configs/config.yaml x=1 y=2
from ym2 import instantiate
hello_world: DictConfig = ...
# Create a new class instance from a configuration
obj = instantiate(hello_world)
# Adding additional parameters
obj = instantiate(hello_world, x=1, y=2)
# file: config.yaml
_cls_: recipes.hello.Hello # indicate the class name
name: Vitalik Buterin # first argument of class Hello
Create a new pull request