Skip to content

dtak/power-constrained-bandits-public

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Power Constrained Bandits

Public repo containing code for simulations, bandit algorithms, wrapper algorithms for paper "Power Constrained Bandits"

Overview

This repo is based on the following academic publication:

Contents

Library Requirements

python>=3.5, numpy, argparse, scipy

Examples

For a quick test for the set up of the code, run sh main.sh It may take ~20min to run 1,000 simulations

More Examples

Python script to run power simulations

The main script to run power analyses simulations on SCB environment with ACTS algorithm and probability-clipping meta-algorithm

python run_exp.py --S 1000 `# number of total simulations`\
--env scb `# environments (options: scb, ascb, mobile, nonlinear)`\
--alg acts `# algorithms (options: fix_pi, acts, bose, linucb)`\
--wrapper clip `# wrapper algorithms (options: none, clip, drop, flip)`\
--experiment power `# experiment type (options: power,type_i_error)`

Python script to run robustness test for mis-estimated treatment effect size

python run_exp.py --S 1000 `# number of total simulations`\
--env scb `# environments (options: scb, ascb, mobile, nonlinear)`\
--alg acts `# algorithms (options: fix_pi, acts, bose, linucb)`\
--wrapper clip `# wrapper algorithms (options: none, clip, drop, flip)`\
--experiment power `# experiment type (options: power,type_i_error)`\
--effect_size large `# estimated treatment_effect size (options: none, small, large)`

Python script to run robustness test for mis-estimated noise size

python run_exp.py --S 1000 `# number of total simulations`\
--env scb `# environments (options: scb, ascb, mobile, nonlinear)`\
--alg acts `# algorithms (options: fix_pi, acts, bose, linucb)`\
--wrapper clip `# wrapper algorithms (options: none, clip, drop, flip)`\
--experiment power `# experiment type (options: power,type_i_error)`\
--noise_size large `# estimated noise size (options: none, small, large)`

Python script to run robustness test for mis-specified marginal reward model

python run_exp.py --S 1000 `# number of total simulations`\
--env scb `# environments (options: scb, ascb, mobile, nonlinear)`\
--alg acts `# algorithms (options: fix_pi, acts, bose, linucb)`\
--wrapper clip `# wrapper algorithms (options: none, clip, drop, flip)`\
--experiment power `# experiment type (options: power,type_i_error)`\
--approx `# approximate marginal reward model with B_nt=1`

Python script to run robustness test for mis-specified treatment effect model

python run_exp.py --S 1000 `# number of total simulations`\
--env scb `# environments (options: scb, ascb, mobile, nonlinear)`\
--alg acts `# algorithms (options: fix_pi, acts, bose, linucb)`\
--wrapper clip `# wrapper algorithms (options: none, clip, drop, flip)`\
--experiment power `# experiment type (options: power,type_i_error)`\
--drop `# drop_last_dimension`
python run_exp.py --S 1000 `# number of total simulations`\
--env nonlinear `# approximate ASCB with a linear function`\
--alg acts `# algorithms (options: fix_pi, acts, bose, linucb)`\
--wrapper clip `# wrapper algorithms (options: none, clip, drop, flip)`\
--experiment power `# experiment type (options: power,type_i_error)`\

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published