-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
196 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
# Copyright 2022 DP Technology | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
entrypoint for Uni-Fold @ Bohrium Apps. | ||
temporary URL: https://labs.dp.tech/projects/unifold/ | ||
""" | ||
|
||
import sys | ||
|
||
from dp.launching.typing import ( | ||
BaseModel, | ||
Field, | ||
Int, | ||
String, | ||
Boolean, | ||
OutputDirectory, | ||
) | ||
from dp.launching.cli import to_runner, default_minimal_exception_handler | ||
|
||
import os | ||
import re | ||
import random | ||
import hashlib | ||
import numpy as np | ||
from pathlib import Path | ||
from unifold.colab.data import validate_input | ||
from unifold.msa.utils import divide_multi_chains | ||
|
||
import pickle | ||
import gzip | ||
from unifold.msa import parsers | ||
from unifold.msa import pipeline | ||
from unifold.data.utils import compress_features | ||
from unifold.data.protein import PDB_CHAIN_IDS | ||
from unifold.colab.mmseqs import get_msa_and_templates | ||
from unifold.colab.model import colab_inference | ||
|
||
|
||
MIN_SINGLE_SEQUENCE_LENGTH = 16 # to satisfy mmseqs | ||
MAX_SINGLE_SEQUENCE_LENGTH = 3000 | ||
MAX_MULTIMER_LENGTH = 3000 | ||
PARAM_DIR = "/root/params" | ||
|
||
|
||
class UnifoldOptions(BaseModel): | ||
sequence: String = Field( | ||
min_length=6, max_length=3000, | ||
description="Input sequence(s). For multimeric targets, please separate different chains with `;`.", | ||
) | ||
name: String = Field( | ||
default="unifold", min_length=0, max_length=31, | ||
description="Name of the target. " | ||
) | ||
symmetry_group: String = Field(default="C1") | ||
use_template: Boolean = Field(default=True) | ||
use_msa: Boolean = Field(default=True) | ||
num_recycling: Int = Field(default=4, ge=1, le=8) | ||
num_ensembles: Int = Field(default=2, ge=1, le=5) | ||
num_replica: Int = Field(default=1, ge=1, le=5, | ||
description="Times of repeatedly running Uni-Fold (with different preprocessing seeds for MSA sampling, etc.)." | ||
) | ||
seed: Int = Field(default=0, ge=0) | ||
output_dir: OutputDirectory = Field( | ||
default="./output" | ||
) # default will be override after online | ||
|
||
def main(opts: UnifoldOptions) -> int: | ||
input_sequences = opts.sequence.strip().split(";") | ||
symmetry_group = opts.symmetry_group | ||
output_dir_base = opts.output_dir.get_full_path() | ||
jobname = re.sub(r'[^a-zA-Z0-9]', '_', opts.name).lower() | ||
target_id = jobname | ||
use_templates = opts.use_template | ||
msa_mode = "MMseqs2" if opts.use_msa else "single_sequence" | ||
times = opts.num_replica | ||
num_ensembles = opts.num_ensembles | ||
num_recycling = opts.num_recycling | ||
manual_seed = opts.seed | ||
|
||
os.makedirs(output_dir_base, exist_ok=True) | ||
|
||
sequences, is_multimer, symmetry_group = validate_input( | ||
input_sequences=input_sequences, | ||
symmetry_group=symmetry_group, | ||
min_length=MIN_SINGLE_SEQUENCE_LENGTH, | ||
max_length=MAX_SINGLE_SEQUENCE_LENGTH, | ||
max_multimer_length=MAX_MULTIMER_LENGTH | ||
) | ||
descriptions = ['> '+target_id+' seq'+str(ii) for ii in range(len(sequences))] | ||
|
||
if is_multimer: | ||
divide_multi_chains(target_id, output_dir_base, sequences, descriptions) | ||
|
||
s = [] | ||
for des, seq in zip(descriptions, sequences): | ||
s += [des, seq] | ||
|
||
unique_sequences = [] | ||
[unique_sequences.append(x) for x in sequences if x not in unique_sequences] | ||
|
||
if len(unique_sequences)==1: | ||
homooligomers_num = len(sequences) | ||
else: | ||
homooligomers_num = 1 | ||
|
||
with open(os.path.join(output_dir_base, f"{jobname}.fasta"), "w") as f: | ||
f.write("\n".join(s)) | ||
|
||
result_dir = Path(output_dir_base) | ||
output_dir = os.path.join(output_dir_base, target_id) | ||
|
||
( | ||
unpaired_msa, | ||
paired_msa, | ||
template_results, | ||
) = get_msa_and_templates( | ||
target_id, | ||
unique_sequences, | ||
result_dir=result_dir, | ||
msa_mode=msa_mode, | ||
use_templates=use_templates, | ||
homooligomers_num = homooligomers_num | ||
) | ||
|
||
for idx, seq in enumerate(unique_sequences): | ||
chain_id = PDB_CHAIN_IDS[idx] | ||
sequence_features = pipeline.make_sequence_features( | ||
sequence=seq, description=f'> {jobname} seq {chain_id}', num_res=len(seq) | ||
) | ||
monomer_msa = parsers.parse_a3m(unpaired_msa[idx]) | ||
msa_features = pipeline.make_msa_features([monomer_msa]) | ||
template_features = template_results[idx] | ||
feature_dict = {**sequence_features, **msa_features, **template_features} | ||
feature_dict = compress_features(feature_dict) | ||
features_output_path = os.path.join( | ||
output_dir, "{}.feature.pkl.gz".format(chain_id) | ||
) | ||
pickle.dump( | ||
feature_dict, | ||
gzip.GzipFile(features_output_path, "wb"), | ||
protocol=4 | ||
) | ||
if is_multimer: | ||
multimer_msa = parsers.parse_a3m(paired_msa[idx]) | ||
pair_features = pipeline.make_msa_features([multimer_msa]) | ||
pair_feature_dict = compress_features(pair_features) | ||
uniprot_output_path = os.path.join( | ||
output_dir, "{}.uniprot.pkl.gz".format(chain_id) | ||
) | ||
pickle.dump( | ||
pair_feature_dict, | ||
gzip.GzipFile(uniprot_output_path, "wb"), | ||
protocol=4, | ||
) | ||
|
||
best_result = colab_inference( | ||
target_id=target_id, | ||
data_dir=output_dir, | ||
param_dir=PARAM_DIR, | ||
output_dir=output_dir, | ||
symmetry_group=symmetry_group, | ||
is_multimer=is_multimer, | ||
max_recycling_iters=num_recycling - 1, | ||
num_ensembles=num_ensembles, | ||
times=times, | ||
manual_seed=manual_seed, | ||
device="cuda:0", # do not change this on colab. | ||
) | ||
|
||
return | ||
|
||
|
||
|
||
def to_parser(): | ||
return to_runner( | ||
UnifoldOptions, | ||
main, | ||
version='0.1.0', | ||
exception_handler=default_minimal_exception_handler, | ||
) | ||
|
||
if __name__ == '__main__': | ||
import sys | ||
to_parser()(sys.argv[1:]) |