Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
almazan authored Dec 5, 2019
1 parent 71ef018 commit 3668257
Showing 1 changed file with 12 additions and 12 deletions.
24 changes: 12 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ All components in this network, including the aggregation layer, are differentia

## News

- **(6/9/2019)** Add AP, Tie-aware AP, Triplet Margin, and Triplet LogExp losses for reference
- **(6/9/2019)** AP loss, Tie-aware AP loss, Triplet Margin loss, and Triplet LogExp loss added for reference
- **(5/9/2019)** Update evaluation and AP numbers for all the benchmarks
- **(22/7/2019)** Paper **_Learning with Average Precision: Training Image Retrieval with a Listwise Loss_** accepted at ICCV 2019

Expand All @@ -33,8 +33,8 @@ All components in this network, including the aggregation layer, are differentia
In order to run this toolbox you will need:

- Python3 (tested with Python 3.7.3)
- PyTorch (tested with version 1.2)
- The following packages: matplotlib, tqdm, scikit-learn
- PyTorch (tested with version 1.4)
- The following packages: numpy, matplotlib, tqdm, scikit-learn

With conda you can run the following commands:

Expand Down Expand Up @@ -83,8 +83,8 @@ The name of the model encodes the backbone architecture of the network and the l
The script `test_dir.py` can be used to evaluate the pre-trained models provided and to reproduce the results above:

```
python -m dirtorch.test_dir --dataset DATASET --checkpoint PATH_TO_MODEL
[--whiten DATASET] [--whitenp POWER] [--aqe ALPHA-QEXP]
python -m dirtorch.test_dir --dataset DATASET --checkpoint PATH_TO_MODEL \
[--whiten DATASET] [--whitenp POWER] [--aqe ALPHA-QEXP] \
[--trfs TRANSFORMS] [--gpu ID] [...]
```

Expand All @@ -102,8 +102,8 @@ For example, to reproduce the results of the Resnet101-AP_loss model on the RPar
cd $DIR_ROOT
export DB_ROOT=/PATH/TO/YOUR/DATASETS
python -m dirtorch.test_dir --dataset RParis6K
--checkpoint dirtorch/data/Resnet101-AP-GeM.pt
python -m dirtorch.test_dir --dataset RParis6K \
--checkpoint dirtorch/data/Resnet101-AP-GeM.pt \
--whiten Landmarks_clean --whitenp 0.25 --gpu 0
```

Expand All @@ -123,8 +123,8 @@ And you should see the following output:
You can also use the pre-trained models to extract features from your own datasets or collection of images. For that we provide the script `feature_extractor.py`:

```
python -m dirtorch.extract_features --dataset DATASET --checkpoint PATH_TO_MODEL
--output PATH_TO_FILE [--whiten DATASET] [--whitenp POWER]
python -m dirtorch.extract_features --dataset DATASET --checkpoint PATH_TO_MODEL \
--output PATH_TO_FILE [--whiten DATASET] [--whitenp POWER] \
[--trfs TRANSFORMS] [--gpu ID] [...]
```

Expand All @@ -136,9 +136,9 @@ For example, this is how the script can be used to extract a feature representat
cd $DIR_ROOT
export DB_ROOT=/PATH/TO/YOUR/DATASETS
python -m dirtorch.extract_features --dataset RParis6K
--checkpoint dirtorch/data/Resnet101-AP-GeM.pt
--output rparis6k_features.npy
python -m dirtorch.extract_features --dataset RParis6K \
--checkpoint dirtorch/data/Resnet101-AP-GeM.pt \
--output rparis6k_features.npy \
--whiten Landmarks_clean --whitenp 0.25 --gpu 0
```

Expand Down

0 comments on commit 3668257

Please sign in to comment.