Skip to content

dmonroy/aiometrics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

aiometrics

Generate metrics from asyncio applications

How to install

As any other python package, use pip or include it in the install_requires section of your setup.py

pip install aiometrics

Sample

Sample application included below makes usage of the default StdoutDriver to print the metrics into the stdout.

# sample.py
import asyncio
import datetime
import random

import aiometrics


@aiometrics.trace
@asyncio.coroutine
def echo_delay():
    ms = random.randrange(0, 5000)
    t = ms/1000
    yield from asyncio.sleep(t)
    print(datetime.datetime.now())

@asyncio.coroutine
def main():
    while True:
        yield from echo_delay()

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    asyncio.ensure_future(main())
    loop.run_forever()
    loop.close()

Run this sample with the following command: python sample.py

Here is the sample output:

2016-06-20 17:56:03.969607
...
2016-06-20 17:57:03.993648
{"instance": {"hostname": "dmo.local", "id": "acf9842e-c127-4844-8026-d7c518076ac2"}, "traces": {"__main__:echo_delay": {"2016-06-20T23:56:00+00": {"count": 24, "avg": 2510.3998333333334, "min": 229.113, "max": 4986.661}}}}

This generates a per-minute report listing metrics for every coroutine function decorated with @aiometrics.trace. Metrics include (per minute):

  • Total number of executions
  • Minimum execution time
  • Maximum execution time
  • Average execution time

About

Generate metrics from AsyncIO applications

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages