Skip to content

Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

License

Notifications You must be signed in to change notification settings

diligent321/DewarpNet

 
 

Repository files navigation

DewarpNet

This repository contains the codes for DewarpNet training.

Training

  • Prepare Data: train.txt & val.txt. Contents should be like:
1/824_8-cp_Page_0503-7Ns0001
1/824_1-cp_Page_0504-2Cw0001
  • Train Shape Network: python trainwc.py --arch unetnc --data_path ./data/DewarpNet/doc3d/ --batch_size 50 --tboard
  • Train Texture Mapping Network: python trainbm.py --arch dnetccnl --img_rows 128 --img_cols 128 --img_norm --n_epoch 250 --batch_size 50 --l_rate 0.0001 --tboard --data_path ./DewarpNet/doc3d

Inference:

  • Run: python infer.py --wc_model_path ./eval/models/unetnc_doc3d.pkl --bm_model_path ./eval/models/dnetccnl_doc3d.pkl --show

Models:

  • Pre-trained models are available here.

Dataset:

  • The doc3D dataset can be downloaded using the scripts here.

More Stuff:

Citation:

If you use the dataset or this code, please consider citing our work-

@inproceedings{SagnikKeICCV2019, 
Author = {Sagnik Das*, Ke Ma*, Zhixin Shu, Dimitris Samaras, Roy Shilkrot}, 
Booktitle = {Proceedings of International Conference on Computer Vision}, 
Title = {DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks}, 
Year = {2019}}   

Acknowledgements:

About

Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%