This repository contains the codes for DewarpNet training.
- Prepare Data:
train.txt
&val.txt
. Contents should be like:
1/824_8-cp_Page_0503-7Ns0001
1/824_1-cp_Page_0504-2Cw0001
- Train Shape Network:
python trainwc.py --arch unetnc --data_path ./data/DewarpNet/doc3d/ --batch_size 50 --tboard
- Train Texture Mapping Network:
python trainbm.py --arch dnetccnl --img_rows 128 --img_cols 128 --img_norm --n_epoch 250 --batch_size 50 --l_rate 0.0001 --tboard --data_path ./DewarpNet/doc3d
- Run:
python infer.py --wc_model_path ./eval/models/unetnc_doc3d.pkl --bm_model_path ./eval/models/dnetccnl_doc3d.pkl --show
- Pre-trained models are available here.
- The doc3D dataset can be downloaded using the scripts here.
If you use the dataset or this code, please consider citing our work-
@inproceedings{SagnikKeICCV2019,
Author = {Sagnik Das*, Ke Ma*, Zhixin Shu, Dimitris Samaras, Roy Shilkrot},
Booktitle = {Proceedings of International Conference on Computer Vision},
Title = {DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks},
Year = {2019}}
- These codes are heavily structured on pytorch-semseg.