Package for using the Gerber Statistic for various statistical techniques.
- Gerber Portfolio Optimization
- Rolling Gerber Correlations
- AutoGerberlation
- Gerber Betas
- GerberPCA
Gerber
└───src
│ Gerber.py
│ setup.py
└───testNotebooks
│ setup.py
│ TestEfficientFrontier.ipynb
│ TestRollingGerber.ipynb
| TestPCA.ipynb
| TestGeberOLS.ipynb
| TestRollingOLSGerber.ipynb
| TestAutoGerberlation.ipynb
└───testScripts
│ setup.py
│ testMatrices.py
│ testGerberNp.py
│ testAutoGerberalation.py
| testAutoCorrGerber.py
| testCumsumComovement.py
└───Examples
│ StockBondCorrelation.ipynb
| CumsumComovementExample.ipynb
src files:
Gerber.py
: OOP file for all of the Gerber Functions
testNotebooks Files:
setup.py
: Downloads sample retursn data from yahoo financeTestEfficientFrontier.ipynb
: Examines the differences between Efficient Frontiers using Gerber Covariance and Standard CovarianceTestRollingGerber.ipynb
: Look at the rolling Gerber correlation and standard rolling Gerber CorrelationTestPCA.ipynb
: Applying PCA decomposition to Gerber matrix rather than Pearson Correlation & CovarianceTestGeberOLS.ipynb
: Using Gaussian Log-likelihood Estimators with Gerber Correlation & CovarianceTestRollingOLSGerber.ipynb
: Rolling OLS with Gerber Correlation & CovarianceTestAutoGerberlation.ipynb
: Calculating Autocorrelation and Autocovaraince with Gerber Statistic
testScripts Files:
setup.py
: Downloads sample retursn data from yahoo financetestMatrices.py
: Creates Sample covariance and correlation matrix using Gerber StatistictestGerberNp.py
: Compares Gerber-based covariance and correlation matrix to standardtestAutoGerberlation.py
: Creates Gerber based autocorrelation and autocovariance matrix and the difference between Gerber and PearsontestAutoCorrGerber.py
: Finds autcorrelation with Gerber statisticstestCumsumComovement
: Generating cumulative co-movement sum
Example Files:
StockBondCorrelation.ipynb
: Analyzing rolling stock bond correlation using some examples from other research. Specifically looking at historical relationship using Shiller Data.CumsumComovement.ipynb
: Using the Cumulative Sum Comovement to generate time series that follow the comovement.