-
Notifications
You must be signed in to change notification settings - Fork 229
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add one script for gradient computation
- Loading branch information
1 parent
6c1bc75
commit 7f12068
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import argparse | ||
from memory_profiler import memory_usage | ||
|
||
import numpy as np | ||
from scipy.ndimage import gaussian_filter | ||
|
||
from examples.seismic import ( | ||
Model, AcquisitionGeometry, Receiver, plot_image | ||
) | ||
from examples.seismic.acoustic import AcousticWaveSolver | ||
from devito import configuration, Function, norm, Eq, Operator | ||
|
||
configuration['log-level'] = 'WARNING' | ||
|
||
# Common Configuration | ||
nshots = 30 # Number of shots | ||
nreceivers = 300 # Number of receivers per shot | ||
|
||
|
||
# Define the water layer mask | ||
def mask(model, value): | ||
mask = model > value | ||
return mask.astype(int) | ||
|
||
|
||
# Compute residual | ||
def compute_residual(residual, dobs, dsyn): | ||
if residual.grid.distributor.is_parallel: | ||
assert np.allclose(dobs.coordinates.data[:], dsyn.coordinates.data) | ||
assert np.allclose(residual.coordinates.data[:], dsyn.coordinates.data) | ||
diff_eq = Eq( | ||
residual, dsyn.subs({dsyn.dimensions[-1]: residual.dimensions[-1]}) - | ||
dobs.subs({dobs.dimensions[-1]: residual.dimensions[-1]}) | ||
) | ||
Operator(diff_eq)() | ||
else: | ||
residual.data[:] = dsyn.data[:] - dobs.data[:] | ||
return residual | ||
|
||
|
||
# FWI Gradient Kernel | ||
def fwi_gradient(mode, model, solver, geometry, source_locations, vp_in, factor=None): | ||
grad = Function(name="grad", grid=model.grid) | ||
residual = Receiver(name='residual', grid=model.grid, | ||
time_range=geometry.time_axis, | ||
coordinates=geometry.rec_positions) | ||
d_obs = Receiver(name='d_obs', grid=model.grid, | ||
time_range=geometry.time_axis, | ||
coordinates=geometry.rec_positions) | ||
d_syn = Receiver(name='d_syn', grid=model.grid, | ||
time_range=geometry.time_axis, | ||
coordinates=geometry.rec_positions) | ||
objective = 0.0 | ||
for i in range(nshots): | ||
geometry.src_positions[0, :] = source_locations[i, :] | ||
solver.forward(vp=model.vp, rec=d_obs) | ||
save_value = True if mode == "full" else False | ||
_, u0, _ = solver.forward(vp=vp_in, save=save_value, rec=d_syn, factor=factor) | ||
|
||
compute_residual(residual, d_obs, d_syn) | ||
objective += 0.5 * norm(residual)**2 | ||
|
||
solver.gradient(rec=residual, u=u0, vp=vp_in, grad=grad, factor=factor) | ||
|
||
return objective, grad | ||
|
||
|
||
def main(mode, factor=None): | ||
shape = (601, 221) | ||
spacing = (15.0, 15.0) | ||
origin = (0.0, 0.0) | ||
vel_path = '../../../devito/data/Marm.bin' | ||
model_true = np.fromfile(vel_path, np.float32).reshape(221, 601) | ||
msk = mask(model_true, 1.5) | ||
model_init = gaussian_filter(model_true, sigma=[10, 15]) * msk | ||
model_init[model_init == 0] = 1.5 | ||
|
||
model = Model(vp=model_true.T, origin=origin, shape=shape, spacing=spacing, | ||
space_order=2, nbl=20, bcs="damp") | ||
model0 = Model(vp=model_init.T, origin=origin, shape=shape, spacing=spacing, | ||
space_order=2, nbl=20, bcs="damp", grid=model.grid) | ||
|
||
t0, tn, f0 = 0.0, 4000.0, 0.005 | ||
src_coordinates = np.array([[model.domain_size[0] * 0.5, 20.0]]) | ||
rec_coordinates = np.column_stack(( | ||
np.linspace(0, model.domain_size[0], nreceivers), | ||
np.full(nreceivers, 20.0) | ||
)) | ||
geometry = AcquisitionGeometry(model, rec_coordinates, src_coordinates, | ||
t0, tn, f0=f0, src_type='Ricker') | ||
|
||
solver = AcousticWaveSolver(model, geometry, space_order=4) | ||
|
||
source_locations = np.column_stack(( | ||
np.linspace(0.0, model.domain_size[0], nshots), | ||
np.zeros(nshots) | ||
)) | ||
|
||
ff, grad = fwi_gradient(mode, model, solver, geometry, | ||
source_locations, model0.vp, factor) | ||
mem_usage = memory_usage()[0] | ||
print(f"Memory usage at the end of gradient ({mode} mode): {mem_usage:.2f} MiB") | ||
grad_max = np.abs(grad.data[:]).max() | ||
plot_image(-grad.data / grad_max, vmin=-1, vmax=1, cmap="seismic") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser(description="FWI Gradient Computation Modes") | ||
parser.add_argument( | ||
"--mode", choices=["full", "snapshot"], required=True, | ||
help="Choose the mode: 'full' for full time axis or 'snapshot' for snapshots" | ||
) | ||
parser.add_argument( | ||
"--factor", type=int, default=None, | ||
help="Snapshot saving factor (only relevant for snapshot mode)" | ||
) | ||
args = parser.parse_args() | ||
main(args.mode, args.factor) |