Skip to content

detiuaveiro/aas

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Aprendizagem Aplicada à Segurança (2024)

Theoretical material

The theorical material can be found here.

Explore the examples

Follow the instructions bellow:

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

The notebooks can be found here

Schedule

Date Class Topic
20/09/2024 1 Introduction
27/09/2024 2 SPAM Detector
04/10/2024 3
11/10/2024 4
18/10/2024 5 Anomaly Detection
25/10/2024 6
08/11/2024 7
15/11/2024 8 Mid-term Exam
10/11/2024 9 Malware Analysis
17/11/2024 10
24/11/2024 11
01/12/2024 12 Project
08/12/2024 13
15/12/2024 14
22/12/2024 15

Bibliography

  • S. Halder and S. Ozdemir, Hands-On Machine Learning for Cybersecurity: Safeguard your system by making your machines intelligent using the Python ecosystem. Packt Publishing Ltd, 2018.
  • C. Chio and D. Freeman, Machine Learning and Security. O’Reilly, 2018.
  • A. Parisi, Hands-On Artificial Intelligence for Cybersecurity: Implement smart AI systems for preventing cyber attacks and detecting threats and network anomalies. Packt Publishing Ltd, 2019.
  • E. Tsukerman, Machine Learning for Cybersecurity Cookbook. Packt Publishing Ltd, 2019.
  • J. P. Mueller and R. Stephens, Machine Learning Security Principles. Packt Publishing Ltd, 2019.

Authors

License

This project is licensed under the MIT License - see the LICENSE file for details

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages