-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6aadedf
commit ed9c388
Showing
2 changed files
with
125 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
#!/bin/bash | ||
|
||
# Define the dataset split | ||
DATASET_SPLIT="validation" # Change this to your desired dataset split | ||
|
||
# Define the batch size | ||
BATCH_SIZE=80 # Change this if you want to use a different batch size | ||
|
||
# List of models | ||
declare -a MODEL_NAMES=("delphi-suite/delphi-llama2-100k" | ||
"delphi-suite/delphi-llama2-200k" | ||
"delphi-suite/delphi-llama2-400k" | ||
"delphi-suite/delphi-llama2-800k" | ||
"delphi-suite/delphi-llama2-1.6m" | ||
"delphi-suite/delphi-llama2-3.2m" | ||
"delphi-suite/delphi-llama2-6.4m" | ||
"delphi-suite/delphi-llama2-12.8m" | ||
"delphi-suite/delphi-llama2-25.6m") | ||
|
||
# Loop through each model and generate log probabilities | ||
for MODEL_NAME in "${MODEL_NAMES[@]}" | ||
do | ||
echo "Processing $MODEL_NAME" | ||
python scripts/inference_delete.py "$MODEL_NAME" "$DATASET_SPLIT" --batch_size "$BATCH_SIZE" | ||
done | ||
|
||
echo "All models processed." |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
import argparse | ||
import os | ||
|
||
import pandas as pd | ||
import torch | ||
from datasets import Dataset, load_dataset | ||
from tqdm.auto import tqdm | ||
from transformers import AutoModelForCausalLM | ||
|
||
torch.set_grad_enabled(False) | ||
|
||
|
||
def get_correct_logprobs(model, samples_tok): | ||
# logits: seq, pos, d_vocab | ||
logits = model(samples_tok).logits | ||
# logprobs: [batch_size, seq_length, vocab_size] | ||
logprobs = torch.nn.functional.log_softmax(logits, dim=-1) | ||
|
||
# make probs a list of lists of correct token LOG probabilities. | ||
list_logprob = [] | ||
for i, sample in enumerate(samples_tok): | ||
valid_length = len(sample) - 1 # Last token doesn't have a next token | ||
sample_logprobs = logprobs[i, :valid_length, :] # [valid_length, vocab_size] | ||
|
||
# Extract the probabilities of the actual next tokens | ||
next_tokens = sample[ | ||
1 : valid_length + 1 | ||
] # Tokens that follow each token in the sequence | ||
correct_logprobs = sample_logprobs[torch.arange(valid_length), next_tokens] | ||
|
||
list_logprob.append(correct_logprobs.detach().cpu().tolist()) | ||
return list_logprob | ||
|
||
# outputs a list of lists of correct token LOG probabilities. | ||
# correct_logprobs = get_correct_logprobs(model, val_sequences[:10]) | ||
|
||
|
||
def main(model_name, dataset_split, batch_size): | ||
val_ds = load_dataset( | ||
"delphi-suite/tinystories-v2-clean-tokenized", split=dataset_split | ||
) | ||
# val_ds[0]["tokens"] # access first sample | ||
|
||
# model accepts 2D tensors (batch_size, seq_len) | ||
val_sequences = torch.tensor([s["tokens"] for s in val_ds]) | ||
|
||
# output_folder = "Correct_logprobs" # no need for this either | ||
# os.makedirs(output_folder, exist_ok=True) # strimlining | ||
|
||
# Initialize an empty DataFrame to accumulate log probabilities | ||
accumulated_logprobs = [] | ||
|
||
model = AutoModelForCausalLM.from_pretrained(model_name) | ||
|
||
# Loop over the validation dataset in batches | ||
for i in tqdm(range(0, len(val_sequences), batch_size)): | ||
batch_sequences = val_sequences[i : i + batch_size] | ||
batch_logprobs = get_correct_logprobs(model, batch_sequences) | ||
accumulated_logprobs.extend(batch_logprobs) | ||
|
||
df_dataset = pd.DataFrame({"logprobs": accumulated_logprobs}) | ||
hf_dataset = Dataset.from_pandas(df_dataset) | ||
hf_dataset.push_to_hub( | ||
repo_id=f"transcendingvictor/{model_name.rsplit('/', 1)[-1]}-validation-logprobs", | ||
split="validation", | ||
private=False, | ||
token="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", | ||
) | ||
|
||
|
||
# %% | ||
|
||
|
||
# %% | ||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser( | ||
description="Run inference and generate log probabilities." | ||
) | ||
parser.add_argument( | ||
"model_name", type=str, help="Model name with or without delphi-suite/ prefix" | ||
) | ||
parser.add_argument( | ||
"dataset_split", type=str, help="Dataset split (e.g., train, validation, test)" | ||
) | ||
parser.add_argument( | ||
"--batch_size", | ||
type=int, | ||
default=80, | ||
help="Batch size for processing (default: 80)", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
# Default prefix handling | ||
if "/" not in args.model_name: | ||
args.model_name = "delphi-suite/" + args.model_name | ||
|
||
main(args.model_name, args.dataset_split, args.batch_size) |