Skip to content

Commit

Permalink
Merge branch 'main' into 5-per-token-performance-plot
Browse files Browse the repository at this point in the history
  • Loading branch information
siwei-li authored Feb 21, 2024
2 parents aeb0ba6 + bd4a88b commit 3cf1f71
Show file tree
Hide file tree
Showing 7 changed files with 874 additions and 1 deletion.
435 changes: 435 additions & 0 deletions notebooks/token_labelling.ipynb

Large diffs are not rendered by default.

6 changes: 5 additions & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,4 +9,8 @@ black==23.12.1
jaxtyping==0.2.25
beartype==0.16.4
pre-commit==3.6.0
isort==5.13.2
isort==5.13.2
spacy==3.7.2
chardet==5.2.0
sentencepiece==0.1.99
protobuf==4.25.2
110 changes: 110 additions & 0 deletions scripts/label_all_tokens.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
import argparse
import pickle
from pathlib import Path

from tqdm.auto import tqdm
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast

from delphi.eval import token_labelling


def tokenize(
tokenizer: PreTrainedTokenizer | PreTrainedTokenizerFast, sample_txt: str
) -> int:
# supposedly this can be different than prepending the bos token id
return tokenizer.encode(tokenizer.bos_token + sample_txt, return_tensors="pt")[0]


# Decode a sentence
def decode(
tokenizer: PreTrainedTokenizer | PreTrainedTokenizerFast, token_ids: int | list[int]
) -> str:
return tokenizer.decode(token_ids, skip_special_tokens=True)


def main():
# Setup argparse
parser = argparse.ArgumentParser(description="Tokenization and labeling utility.")
parser.add_argument(
"--model_name",
type=str,
help="Name of the model to use for tokenization and labeling.",
default="delphi-suite/delphi-llama2-100k",
required=False,
)
args = parser.parse_args()

# Access command-line arguments
# Directory to save the results
SAVE_DIR = Path("src/delphi/eval/")
model_name = args.model_name

print("\n", " LABEL ALL TOKENS ".center(50, "="), "\n")
print(f"You chose the model: {model_name}\n")
print(
f"The language model will be loaded from Huggingface and its tokenizer used to do two things:\n\t1) Create a list of all tokens in the tokenizer's vocabulary.\n\t2) Label each token with its part of speech, dependency, and named entity recognition tags.\nThe respective results will be saved to files located at: '{SAVE_DIR}'\n"
)

# ================ (1) =================
print("(1) Create a list of all tokens in the tokenizer's vocabulary ...")

# Load the tokenizer from Huggingface
tokenizer = AutoTokenizer.from_pretrained(model_name)
vocab_size = tokenizer.vocab_size
print("Loaded the tokenizer.\nThe vocab size is:", vocab_size)

# Create a list of all tokens in the tokenizer's vocabulary
tokens_str = "" # will hold all tokens and their ids
for i in range(tokenizer.vocab_size):
tokens_str += f"{i},{decode(tokenizer, i)}\n"

# Save the list of all tokens to a file
filename = "all_tokens_list.txt"
filepath = SAVE_DIR / filename
with open(filepath, "w", encoding="utf-8") as f:
f.write(tokens_str)

print(f"Saved the list of all tokens to:\n\t{filepath}\n")

# ================ (2) =================
print("(2) Label each token ...")

# let's label each token
labelled_token_ids_dict: dict[int, dict[str, bool]] = {} # token_id: labels
max_token_id = tokenizer.vocab_size # stop at which token id, vocab size
# we iterate over all token_ids individually
for token_id in tqdm(range(0, max_token_id), desc="Labelling tokens"):
# decode the token_ids to get a list of tokens, a 'sentence'
tokens = decode(tokenizer, token_id) # list of tokens == sentence
# put the sentence into a list, to make it a batch of sentences
sentences = [tokens]
# label the batch of sentences
labels = token_labelling.label_batch_sentences(
sentences, tokenized=True, verbose=False
)
# create a dict with the token_ids and their labels
# update the labelled_token_ids_dict with the new dict
labelled_token_ids_dict[token_id] = labels[0][0]

# Save the labelled tokens to a file
filename = "labelled_token_ids_dict.pkl"
filepath = SAVE_DIR / filename
with open(filepath, "wb") as f:
pickle.dump(labelled_token_ids_dict, f)

print(f"Saved the labelled tokens to:\n\t{filepath}\n")

# sanity check that The pickled and the original dict are the same
print("Sanity check ...", end="")
# load pickle
with open(filepath, "rb") as f:
pickled = pickle.load(f)
# compare
assert labelled_token_ids_dict == pickled
print(" completed.")

print(" END ".center(50, "="))


if __name__ == "__main__":
main()
Binary file added src/delphi/eval/all_tokens_list.txt
Binary file not shown.
Binary file added src/delphi/eval/labelled_token_ids_dict.pkl
Binary file not shown.
210 changes: 210 additions & 0 deletions src/delphi/eval/token_labelling.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
from typing import Callable, Optional

import spacy
from spacy.tokens import Doc, Token
from spacy.util import is_package

# make sure the english language model capabilities are installed by the equivalent of:
# python -m spacy download en_core_web_sm
# Should be run once, initially. Download only starts if not already installed.
SPACY_MODEL = "en_core_web_sm" # small: "en_core_web_sm", large: "en_core_web_trf"
NLP = None # global var to hold the language model
if not is_package(SPACY_MODEL):
spacy.cli.download(SPACY_MODEL, False, False)


TOKEN_LABELS: dict[str, Callable] = {
# --- custom categories ---
"Starts with space": (lambda token: token.text.startswith(" ")), # bool
"Capitalized": (lambda token: token.text[0].isupper()), # bool
# --- POS (part-of-speech) categories ---
# They include the Universal POS tags (https://universaldependencies.org/u/pos/)
# -> "POS Tag": (lambda token: token.pos_), # 'NOUN', 'VB', ..
"Is Adjective": (lambda token: token.pos_ == "ADJ"),
"Is Adposition": (lambda token: token.pos_ == "ADP"),
"Is Adverb": (lambda token: token.pos_ == "ADV"),
"Is Auxiliary": (lambda token: token.pos_ == "AUX"),
"Is Coordinating conjuction": (lambda token: token.pos_ == "CCONJ"),
"Is Determiner": (lambda token: token.pos_ == "DET"),
"Is Interjunction": (lambda token: token.pos_ == "INTJ"),
"Is Noun": (lambda token: token.pos_ == "NOUN"),
"Is Numeral": (lambda token: token.pos_ == "NUM"),
"Is Particle": (lambda token: token.pos_ == "PART"),
"Is Pronoun": (lambda token: token.pos_ == "PRON"),
"Is Proper Noun": (lambda token: token.pos_ == "PROPN"),
"Is Punctuation": (lambda token: token.pos_ == "PUNCT"),
"Is Subordinating conjuction": (lambda token: token.pos_ == "SCONJ"),
"Is Symbol": (lambda token: token.pos_ == "SYM"),
"Is Verb": (lambda token: token.pos_ == "VERB"),
"Is Other": (lambda token: token.pos_ == "X"),
# --- dependency categories ---
# -> "Dependency": (lambda token: token.dep_), # 'nsubj', 'ROOT', 'dobj', ..
# "Is Subject": (lambda token: token.dep_ == "nsubj"),
# "Is Object": (lambda token: token.dep_ == "dobj"),
# "Is Root": (
# lambda token: token.dep_ == "ROOT"
# ), # root of the sentence (often a verb)
# "Is auxiliary": (lambda token: token.dep_ == "aux"),
# --- Named entity recognition (NER) categories ---
# "Named Entity Type": (lambda token: token.ent_type_), # '', 'PERSON', 'ORG', 'GPE', ..
"Is Named Entity": (lambda token: token.ent_type_ != ""),
}


def explain_token_labels(token: Optional[Token] = None) -> None:
"""
Prints the explanation of a specific token's labels or of ALL
possible labels (POS, dependency, NER, ...), if no token is provided.
Parameters
----------
token : Optional[Token], optional
The token, whose labels should be explained. If None, all labels
possible labels are explained, by default None.
"""
if token is not None:
# get token labels
labels = label_single_token(token)
print(" Explanation of token labels ".center(45, "-"))
print("Token text:".ljust(20), token.text)
print("Token dependency:".ljust(20), spacy.glossary.explain(token.dep_))
print("Token POS:".ljust(20), spacy.glossary.explain(token.pos_))
print(" Token labels ".center(45, "-"))
for i, (label_name, value) in enumerate(labels.items()):
print(f" {i:2} ", label_name.ljust(20), value)

else:
glossary = spacy.glossary.GLOSSARY
print(
f"Explanation of all {len(glossary.keys())} token labels (POS, dependency, NER, ...):"
)
for label, key in glossary.items():
print(" ", label.ljust(10), key)


def label_single_token(token: Token | None) -> dict[str, bool]:
"""
Labels a single token. A token, that has been analyzed by the spaCy
library.
Parameters
----------
token : Token | None
The token to be labelled.
Returns
-------
dict[str, bool]
Returns a dictionary with the token's labels as keys and their
corresponding boolean values.
"""
labels = dict() # The dict holding labels of a single token
# if token is None, then it is a '' empty strong token or similar
if token is None:
for label_name, category_check in TOKEN_LABELS.items():
labels[label_name] = False
labels["Is Other"] = True
return labels
# all other cases / normal tokens
for label_name, category_check in TOKEN_LABELS.items():
labels[label_name] = category_check(token)
return labels


def label_sentence(tokens: Doc | list[Token]) -> list[dict[str, bool]]:
"""
Labels spaCy Tokens in a sentence. Takes the context of the token into account
for dependency labels (e.g. subject, object, ...), IF dependency labels are turned on.
Parameters
----------
tokens : list[Token]
A list of tokens.
Returns
-------
list[dict[str, bool]]
Returns a list of the tokens' labels.
"""
labelled_tokens = list() # list holding labels for all tokens of sentence
# if the list is empty it is because token is '' empty string or similar
if len(tokens) == 0:
labels = label_single_token(None)
labelled_tokens.append(labels)
return labelled_tokens
# in all other cases
for token in tokens:
labels = label_single_token(token)
labelled_tokens.append(labels)
return labelled_tokens


def label_batch_sentences(
sentences: list[str] | list[list[str]],
tokenized: bool = True,
verbose: bool = False,
) -> list[list[dict[str, bool]]]:
"""
Labels tokens in a sentence batchwise. Takes the context of the token into
account for dependency labels (e.g. subject, object, ...).
Parameters
----------
sentences : list
A batch/list of sentences, each being a list of tokens.
tokenized : bool, optional
Whether the sentences are already tokenized, by default True. If the sentences
are full strings and not lists of tokens, then set to False. If true then `sentences` must be list[list[str]].
verbose : bool, optional
Whether to print the tokens and their labels to the console, by default False.
Returns
-------
list[list[dict[str, bool]]
Returns a list of sentences. Each sentence contains a list of its
corresponding token length where each entry provides the labels/categories
for the token. Sentence -> Token -> Labels
"""
global NLP, SPACY_MODEL

if NLP is None:
# Load english language model
NLP = spacy.load(SPACY_MODEL)
# labelled tokens, list holding sentences holding tokens holding corresponding token labels
labelled_sentences: list[list[dict[str, bool]]] = list()

# go through each sentence in the batch
for sentence in sentences:
if tokenized:
# sentence is a list of tokens
doc = Doc(NLP.vocab, words=sentence) # type: ignore
# Apply the spaCy pipeline, except for the tokenizer
for name, proc in NLP.pipeline:
if name != "tokenizer":
doc = proc(doc)
else:
# sentence is a single string
doc = NLP(sentence) # type: ignore

labelled_tokens = list() # list holding labels for all tokens of sentence
labelled_tokens = label_sentence(doc)

# print the token and its labels to console
if verbose is True:
# go through each token in the sentence
for token, labelled_token in zip(doc, labelled_tokens):
print(f"Token: {token}")
print(" | ".join(list(TOKEN_LABELS.keys())))
printable = [
str(l).ljust(len(name)) for name, l in labelled_token.items()
]
printable = " | ".join(printable)
print(printable)
print("---")
# add current sentence's tokens' labels to the list
labelled_sentences.append(labelled_tokens)

if verbose is True:
print("\n")

return labelled_sentences
Loading

0 comments on commit 3cf1f71

Please sign in to comment.