-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
115 additions
and
74 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "6825ba6543ba45438b18cf0949576020", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"VBox(children=(Dropdown(description='Token Category:', options=('nouns', 'verbs', 'prepositions', 'adjectives'…" | ||
] | ||
}, | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"from collections import defaultdict\n", | ||
"import math\n", | ||
"import random\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"from delphi.eval.vis_per_token_model import visualize_per_token_category\n", | ||
"\n", | ||
"\n", | ||
"random.seed(0)\n", | ||
"\n", | ||
"# generate mock data\n", | ||
"model_names = ['llama2-100k', 'llama2-200k', 'llama2-1m', 'llama2-10m']\n", | ||
"categories = ['nouns', 'verbs', 'prepositions', 'adjectives']\n", | ||
"entries = [200, 100, 150, 300]\n", | ||
"performance_data = defaultdict()\n", | ||
"for i, model in enumerate(model_names):\n", | ||
" performance_data[model] = defaultdict()\n", | ||
" for cat in categories:\n", | ||
" x = [math.log2(random.random()) for _ in range(entries[i])]\n", | ||
" means = np.mean(x)\n", | ||
" err_low = means - np.percentile(x, 25)\n", | ||
" err_hi = np.percentile(x, 75) - means\n", | ||
" performance_data[model][cat] = (-means, err_low, err_hi)\n", | ||
"\n", | ||
"\n", | ||
"visualize_per_token_category(performance_data)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": ".venv", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.0" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,37 +1,50 @@ | ||
import ipywidgets as widgets | ||
import matplotlib.pyplot as plt | ||
import ipywidgets | ||
import numpy as np | ||
from ipywidgets import interact | ||
import plotly.graph_objects as go | ||
from beartype.typing import Dict | ||
|
||
|
||
def visualize_per_token_category(input): | ||
def visualize_per_token_category(input: Dict[str, Dict[str, tuple]]) -> ipywidgets.VBox: | ||
model_names = list(input.keys()) | ||
categories = list(list(input.values())[0].keys()) | ||
categories = list(input[model_names[0]].keys()) | ||
category = categories[0] | ||
|
||
def _f(category): | ||
def get_plot_values(category: str) -> tuple[np.ndarray, np.ndarray, np.ndarray]: | ||
x = np.array([input[name][category] for name in model_names]).T | ||
means = np.mean(x, axis=0) | ||
median = np.median(x, axis=0) | ||
q1 = np.quantile(x, 0.25, axis=0) | ||
q3 = np.quantile(x, 0.75, axis=0) | ||
|
||
ax = plt.gca() | ||
ax.set_ylim([-5, 5]) # TODO | ||
|
||
plt.plot(model_names, means) | ||
plt.errorbar(model_names, median, yerr=[median - q1, q3 - median], fmt="o") | ||
|
||
interact( | ||
_f, | ||
category=widgets.Dropdown( | ||
options=categories, | ||
placeholder="", | ||
description="Token Category:", | ||
disabled=False, | ||
means, err_lo, err_hi = x[0], x[1], x[2] | ||
return means, err_lo, err_hi | ||
|
||
means, err_low, err_hi = get_plot_values(category) | ||
g = go.FigureWidget( | ||
data=go.Scatter( | ||
x=model_names, | ||
y=means, | ||
error_y=dict( | ||
type="data", | ||
symmetric=False, | ||
array=err_hi, | ||
arrayminus=err_low, | ||
color="purple", | ||
), | ||
), | ||
layout=go.Layout(yaxis=dict(title="Loss")), | ||
) | ||
|
||
selected_category = ipywidgets.Dropdown( | ||
options=categories, | ||
placeholder="", | ||
description="Token Category:", | ||
disabled=False, | ||
) | ||
|
||
def response(change): | ||
if selected_category.value: | ||
means, err_lo, err_hi = get_plot_values(selected_category.value) | ||
with g.batch_update(): | ||
g.data[0].y = means | ||
g.data[0].error_y["array"] = err_hi | ||
g.data[0].error_y["arrayminus"] = err_lo | ||
|
||
selected_category.observe(response, names="value") | ||
|
||
# Usage: | ||
# from dataset.mock_per_token_performance import performance_datas | ||
# visualize_per_token_category(performance_data) | ||
return ipywidgets.VBox([selected_category, g]) |