Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(tf): fix modifier_type in DeepEval #3855

Merged
merged 1 commit into from
Jun 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion deepmd/tf/infer/deep_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,6 @@ def __init__(
self.has_fparam = self.tensors["fparam"] is not None
self.has_aparam = self.tensors["aparam"] is not None
self.has_spin = self.ntypes_spin > 0
self.modifier_type = None

# looks ugly...
if self.modifier_type == "dipole_charge":
Expand Down Expand Up @@ -201,6 +200,8 @@ def _init_tensors(self):
"ntypes_spin": "spin_attr/ntypes_spin:0",
# descriptor
"descriptor": "o_descriptor:0",
# modifier
"modifier_type": "modifier_attr/type:0",
}
# output tensors
output_tensor_names = {}
Expand Down Expand Up @@ -260,6 +261,10 @@ def _init_attr(self):
else:
self.numb_dos = 0
self.tmap = tmap.decode("utf-8").split()
if self.tensors["modifier_type"] is not None:
self.modifier_type = run_sess(self.sess, [self.tensors["modifier_type"]])[0]
else:
self.modifier_type = None

@property
@lru_cache(maxsize=None)
Expand Down
60 changes: 60 additions & 0 deletions source/tests/tf/test_dplr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import unittest
from pathlib import (
Path,
)

import numpy as np

from deepmd.infer.deep_pot import (
DeepPot,
)
from deepmd.tf.utils.convert import (
convert_pbtxt_to_pb,
)


class TestDPLR(unittest.TestCase):
def setUp(self):
# a bit strange path, need to move to the correct directory
pbtxt_file = (
Path(__file__).parent.parent.parent / "lmp" / "tests" / "lrmodel.pbtxt"
)
convert_pbtxt_to_pb(pbtxt_file, "lrmodel.pb")

self.expected_e_lr_efield_variable = -40.56538550
self.expected_f_lr_efield_variable = np.array(
[
[0.35019748, 0.27802691, -0.38443156],
[-0.42115581, -0.20474826, -0.02701100],
[-0.56357653, 0.34154004, 0.78389512],
[0.21023870, -0.60684635, -0.39875165],
[0.78732106, 0.00610023, 0.17197636],
[-0.36302488, 0.18592742, -0.14567727],
]
)

self.box = np.eye(3).reshape(1, 9) * 20.0
self.coord = np.array(
[
[1.25545000, 1.27562200, 0.98873000],
[0.96101000, 3.25750000, 1.33494000],
[0.66417000, 1.31153700, 1.74354000],
[1.29187000, 0.33436000, 0.73085000],
[1.88885000, 3.51130000, 1.42444000],
[0.51617000, 4.04330000, 0.90904000],
[1.25545000, 1.27562200, 0.98873000],
[0.96101000, 3.25750000, 1.33494000],
]
).reshape(1, 8, 3)
self.atype = np.array([0, 0, 1, 1, 1, 1, 2, 2])

def test_eval(self):
dp = DeepPot("lrmodel.pb")
e, f, v, ae, av = dp.eval(
self.coord[:, :6], self.box, self.atype[:6], atomic=True
)
np.testing.assert_allclose(e, self.expected_e_lr_efield_variable, atol=1e-6)
np.testing.assert_allclose(
f.ravel(), self.expected_f_lr_efield_variable.ravel(), atol=1e-6
)