Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix: raise error for non mixed type model #3759

Merged
merged 10 commits into from
May 9, 2024
11 changes: 11 additions & 0 deletions deepmd/dpmodel/atomic_model/linear_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,17 @@ def __init__(
):
super().__init__(type_map, **kwargs)
super().init_out_stat()

# check all sub models are of mixed type.
model_mixed_type = []
for m in models:
if not m.mixed_types():
model_mixed_type.append(m)
if len(model_mixed_type) > 0:
raise ValueError(
f"LinearAtomicModel only supports AtomicModel of mixed type, the following models are not mixed type: {model_mixed_type}."
)

self.models = models
sub_model_type_maps = [md.get_type_map() for md in models]
err_msg = []
Expand Down
11 changes: 11 additions & 0 deletions deepmd/pt/model/atomic_model/linear_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,17 @@ def __init__(
):
super().__init__(type_map, **kwargs)
super().init_out_stat()

# check all sub models are of mixed type.
model_mixed_type = []
for m in models:
if not m.mixed_types():
model_mixed_type.append(m)
if len(model_mixed_type) > 0:
raise ValueError(
f"LinearAtomicModel only supports AtomicModel of mixed type, the following models are not mixed type: {model_mixed_type}."
)

self.models = torch.nn.ModuleList(models)
sub_model_type_maps = [md.get_type_map() for md in models]
err_msg = []
Expand Down
6 changes: 3 additions & 3 deletions deepmd/pt/model/descriptor/se_atten.py
Original file line number Diff line number Diff line change
Expand Up @@ -464,7 +464,7 @@ def forward(
protection=self.env_protection,
)
nlist_mask = nlist != -1
nlist[nlist == -1] = 0
nlist = torch.where(nlist == -1, 0, nlist)
anyangml marked this conversation as resolved.
Show resolved Hide resolved
sw = torch.squeeze(sw, -1)
# beyond the cutoff sw should be 0.0
sw = sw.masked_fill(~nlist_mask, 0.0)
Expand All @@ -475,13 +475,13 @@ def forward(
nt = extended_atype_embd.shape[-1]
atype_tebd_ext = extended_atype_embd
# nb x (nloc x nnei) x nt
index = nlist.reshape(nb, nloc * nnei).unsqueeze(-1).expand(-1, -1, nt)
index = nlist_copy.reshape(nb, nloc * nnei).unsqueeze(-1).expand(-1, -1, nt)
anyangml marked this conversation as resolved.
Show resolved Hide resolved
# nb x (nloc x nnei) x nt
atype_tebd_nlist = torch.gather(atype_tebd_ext, dim=1, index=index)
# nb x nloc x nnei x nt
atype_tebd_nlist = atype_tebd_nlist.view(nb, nloc, nnei, nt)
# (nb x nloc) x nnei
exclude_mask = self.emask(nlist, extended_atype).view(nb * nloc, nnei)
exclude_mask = self.emask(nlist_copy, extended_atype).view(nb * nloc, nnei)
anyangml marked this conversation as resolved.
Show resolved Hide resolved
if self.old_impl:
assert self.filter_layers_old is not None
dmatrix = dmatrix.view(
Expand Down
12 changes: 7 additions & 5 deletions source/tests/common/dpmodel/test_linear_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,8 @@
from deepmd.dpmodel.atomic_model.pairtab_atomic_model import (
PairTabAtomicModel,
)
from deepmd.dpmodel.descriptor.se_e2_a import (
DescrptSeA,
from deepmd.dpmodel.descriptor import (
DescrptDPA1,
)
from deepmd.dpmodel.fitting.invar_fitting import (
InvarFitting,
Expand All @@ -39,10 +39,11 @@ def test_pairwise(self, mock_loadtxt):
extended_atype = np.array([[0, 0]])
nlist = np.array([[[1], [-1]]])

ds = DescrptSeA(
ds = DescrptDPA1(
rcut_smth=0.3,
rcut=0.4,
sel=[3],
ntypes=2,
)
ft = InvarFitting(
"energy",
Expand Down Expand Up @@ -134,10 +135,11 @@ def setUp(self, mock_loadtxt):
[0.02, 0.25, 0.4, 0.75],
]
)
ds = DescrptSeA(
ds = DescrptDPA1(
self.rcut,
self.rcut_smth,
self.sel,
sum(self.sel),
self.nt,
)
ft = InvarFitting(
"energy",
Expand Down
12 changes: 7 additions & 5 deletions source/tests/pt/model/test_linear_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,8 @@
DPZBLLinearEnergyAtomicModel,
PairTabAtomicModel,
)
from deepmd.pt.model.descriptor.se_a import (
DescrptSeA,
from deepmd.pt.model.descriptor import (
DescrptDPA1,
)
from deepmd.pt.model.model import (
DPZBLModel,
Expand Down Expand Up @@ -55,10 +55,11 @@ def test_pairwise(self, mock_loadtxt):
extended_atype = torch.tensor([[0, 0]], device=env.DEVICE)
nlist = torch.tensor([[[1], [-1]]], device=env.DEVICE)

ds = DescrptSeA(
ds = DescrptDPA1(
rcut_smth=0.3,
rcut=0.4,
sel=[3],
ntypes=2,
).to(env.DEVICE)
ft = InvarFitting(
"energy",
Expand Down Expand Up @@ -128,10 +129,11 @@ def setUp(self, mock_loadtxt):
[0.02, 0.25, 0.4, 0.75],
]
)
ds = DescrptSeA(
ds = DescrptDPA1(
self.rcut,
self.rcut_smth,
self.sel,
sum(self.sel),
self.nt,
).to(env.DEVICE)
ft = InvarFitting(
"energy",
Expand Down
20 changes: 14 additions & 6 deletions source/tests/pt/model/test_permutation.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,14 +68,22 @@
"sw_rmin": 0.2,
"sw_rmax": 1.0,
"descriptor": {
"type": "se_e2_a",
"sel": [46, 92, 4],
"rcut_smth": 0.50,
"rcut": 6.00,
"type": "se_atten",
"sel": 40,
"rcut_smth": 0.5,
"rcut": 4.0,
"neuron": [25, 50, 100],
"resnet_dt": False,
"axis_neuron": 16,
"seed": 1,
"attn": 64,
"attn_layer": 2,
"attn_dotr": True,
"attn_mask": False,
"activation_function": "tanh",
"scaling_factor": 1.0,
"normalize": False,
"temperature": 1.0,
"set_davg_zero": True,
"type_one_side": True,
},
"fitting_net": {
"neuron": [24, 24, 24],
Expand Down
Loading