Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat: add pair table model to pytorch #3192

Merged
merged 31 commits into from
Jan 31, 2024
Merged
Show file tree
Hide file tree
Changes from 28 commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
47cff4b
feat: add pair table model to pytorch
Jan 28, 2024
04b6f57
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 28, 2024
eb59d87
fix: typo
Jan 28, 2024
b7cbbd5
fix: typo
Jan 28, 2024
a1a76bb
Merge branch 'devel' into devel
anyangml Jan 28, 2024
84767f3
fix: update ruct extrapolation
Jan 28, 2024
8fee8fa
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 28, 2024
ff08515
fix: update allclose precision
Jan 28, 2024
f4b3720
Merge branch 'devel' into devel
anyangml Jan 29, 2024
451916e
Merge branch 'devel' into devel
anyangml Jan 29, 2024
0968eaa
Merge branch 'devel' into devel
anyangml Jan 29, 2024
6b0559e
Merge branch 'devel' into devel
anyangml Jan 29, 2024
8cbb98c
chore: refactor common method to PairTab
Jan 29, 2024
a08092c
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 29, 2024
d3090b9
fix: update unit tests
Jan 29, 2024
daf2fc6
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 29, 2024
399c278
fix: revert padding zero mask change
Jan 29, 2024
59abe43
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 29, 2024
8f1cdc8
Merge branch 'devel' into devel
anyangml Jan 30, 2024
88936cc
Merge branch 'devel' into devel
anyangml Jan 30, 2024
1c4ee0d
feat: redo extrapolation with cubic spline for smoothness
Jan 30, 2024
5793828
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 30, 2024
27f3559
Merge branch 'devel' into devel
anyangml Jan 30, 2024
92dec18
chore: refactor _make_data in PairTab
Jan 30, 2024
bc04359
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 30, 2024
4433035
chore: move file
Jan 30, 2024
2ba0318
Merge branch 'devel' into devel
anyangml Jan 30, 2024
f2c40e6
Merge branch 'devel' into devel
anyangml Jan 31, 2024
4851a0a
chore: refactor extrapolation code
Jan 31, 2024
ddbe7db
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jan 31, 2024
29d95db
Merge branch 'devel' into devel
anyangml Jan 31, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
375 changes: 375 additions & 0 deletions deepmd/pt/model/model/pair_tab.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,375 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from typing import (
Dict,
List,
Optional,
Union,
)

import torch
from torch import (
nn,
)

from deepmd.model_format import (
FittingOutputDef,
OutputVariableDef,
)
from deepmd.utils.pair_tab import (
PairTab,
)

from .atomic_model import (
AtomicModel,
)


class PairTabModel(nn.Module, AtomicModel):
"""Pairwise tabulation energy model.

This model can be used to tabulate the pairwise energy between atoms for either
short-range or long-range interactions, such as D3, LJ, ZBL, etc. It should not
be used alone, but rather as one submodel of a linear (sum) model, such as
DP+D3.

Do not put the model on the first model of a linear model, since the linear
model fetches the type map from the first model.

At this moment, the model does not smooth the energy at the cutoff radius, so
one needs to make sure the energy has been smoothed to zero.

Parameters
----------
tab_file : str
The path to the tabulation file.
rcut : float
The cutoff radius.
sel : int or list[int]
The maxmum number of atoms in the cut-off radius.
"""

def __init__(
self, tab_file: str, rcut: float, sel: Union[int, List[int]], **kwargs
):
super().__init__()
self.tab_file = tab_file
self.rcut = rcut

self.tab = PairTab(self.tab_file, rcut=rcut)
self.ntypes = self.tab.ntypes

tab_info, tab_data = self.tab.get() # this returns -> Tuple[np.array, np.array]
self.tab_info = torch.from_numpy(tab_info)
self.tab_data = torch.from_numpy(tab_data)

# self.model_type = "ener"
# self.model_version = MODEL_VERSION ## this shoud be in the parent class

if isinstance(sel, int):
self.sel = sel
elif isinstance(sel, list):
self.sel = sum(sel)

Check warning on line 71 in deepmd/pt/model/model/pair_tab.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/model/pair_tab.py#L70-L71

Added lines #L70 - L71 were not covered by tests
else:
raise TypeError("sel must be int or list[int]")

Check warning on line 73 in deepmd/pt/model/model/pair_tab.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/model/pair_tab.py#L73

Added line #L73 was not covered by tests

def get_fitting_output_def(self) -> FittingOutputDef:
return FittingOutputDef(

Check warning on line 76 in deepmd/pt/model/model/pair_tab.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/model/pair_tab.py#L76

Added line #L76 was not covered by tests
[
OutputVariableDef(
name="energy", shape=[1], reduciable=True, differentiable=True
)
]
)

def get_rcut(self) -> float:
return self.rcut

Check warning on line 85 in deepmd/pt/model/model/pair_tab.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/model/pair_tab.py#L85

Added line #L85 was not covered by tests

def get_sel(self) -> int:
return self.sel

Check warning on line 88 in deepmd/pt/model/model/pair_tab.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/model/pair_tab.py#L88

Added line #L88 was not covered by tests

def distinguish_types(self) -> bool:
# to match DPA1 and DPA2.
return False

Check warning on line 92 in deepmd/pt/model/model/pair_tab.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/model/pair_tab.py#L92

Added line #L92 was not covered by tests

def forward_atomic(
self,
extended_coord,
extended_atype,
nlist,
mapping: Optional[torch.Tensor] = None,
do_atomic_virial: bool = False,
) -> Dict[str, torch.Tensor]:
self.nframes, self.nloc, self.nnei = nlist.shape

# this will mask all -1 in the nlist
masked_nlist = torch.clamp(nlist, 0)

atype = extended_atype[:, : self.nloc] # (nframes, nloc)
pairwise_dr = self._get_pairwise_dist(
extended_coord
) # (nframes, nall, nall, 3)
pairwise_rr = pairwise_dr.pow(2).sum(-1).sqrt() # (nframes, nall, nall)

self.tab_data = self.tab_data.reshape(
self.tab.ntypes, self.tab.ntypes, self.tab.nspline, 4
)

# to calculate the atomic_energy, we need 3 tensors, i_type, j_type, rr
# i_type : (nframes, nloc), this is atype.
# j_type : (nframes, nloc, nnei)
j_type = extended_atype[
torch.arange(extended_atype.size(0))[:, None, None], masked_nlist
]

# slice rr to get (nframes, nloc, nnei)
rr = torch.gather(pairwise_rr[:, : self.nloc, :], 2, masked_nlist)

raw_atomic_energy = self._pair_tabulated_inter(nlist, atype, j_type, rr)

atomic_energy = 0.5 * torch.sum(
torch.where(
nlist != -1, raw_atomic_energy, torch.zeros_like(raw_atomic_energy)
),
dim=-1,
)

return {"energy": atomic_energy}

def _pair_tabulated_inter(
self,
nlist: torch.Tensor,
i_type: torch.Tensor,
j_type: torch.Tensor,
rr: torch.Tensor,
) -> torch.Tensor:
"""Pairwise tabulated energy.

Parameters
----------
nlist : torch.Tensor
The unmasked neighbour list. (nframes, nloc)
i_type : torch.Tensor
The integer representation of atom type for all local atoms for all frames. (nframes, nloc)
j_type : torch.Tensor
The integer representation of atom type for all neighbour atoms of all local atoms for all frames. (nframes, nloc, nnei)
rr : torch.Tensor
The salar distance vector between two atoms. (nframes, nloc, nnei)

Returns
-------
torch.Tensor
The masked atomic energy for all local atoms for all frames. (nframes, nloc, nnei)

Raises
------
Exception
If the distance is beyond the table.

Notes
-----
This function is used to calculate the pairwise energy between two atoms.
It uses a table containing cubic spline coefficients calculated in PairTab.
"""
rmin = self.tab_info[0]
hh = self.tab_info[1]
hi = 1.0 / hh

self.nspline = int(self.tab_info[2] + 0.1)

uu = (rr - rmin) * hi # this is broadcasted to (nframes,nloc,nnei)

# if nnei of atom 0 has -1 in the nlist, uu would be 0.
# this is to handle the nlist where the mask is set to 0, so that we don't raise exception for those atoms.
uu = torch.where(nlist != -1, uu, self.nspline + 1)

if torch.any(uu < 0):
raise Exception("coord go beyond table lower boundary")

Check warning on line 186 in deepmd/pt/model/model/pair_tab.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/model/pair_tab.py#L186

Added line #L186 was not covered by tests

idx = uu.to(torch.int)

uu -= idx

table_coef = self._extract_spline_coefficient(
i_type, j_type, idx, self.tab_data, self.nspline
)
table_coef = table_coef.reshape(self.nframes, self.nloc, self.nnei, 4)
ener = self._calcualte_ener(table_coef, uu)

if self.tab.rmax <= self.rcut:
# here we need to overwrite energy to zero beyond rcut.
mask_beyond_rcut = rr > self.rcut
ener[mask_beyond_rcut] = 0

# here we use smooth extrapolation to replace linear extrapolation.
extrapolation = self._extrapolate_rmax_rcut()
if extrapolation is not None:
anyangml marked this conversation as resolved.
Show resolved Hide resolved
uu_extrapolate = (rr - self.tab.rmax) / (self.rcut - self.tab.rmax)
clipped_uu = torch.clamp(uu_extrapolate, 0, 1) # clip rr within rmax.
extrapolate_coef = self._extract_spline_coefficient(
i_type, j_type, torch.zeros_like(idx), extrapolation, 1
)
extrapolate_coef = extrapolate_coef.reshape(
self.nframes, self.nloc, self.nnei, 4
)
ener_extrpolate = self._calcualte_ener(extrapolate_coef, clipped_uu)
mask_rmax_to_rcut = (self.tab.rmax < rr) & (rr <= self.rcut)
ener[mask_rmax_to_rcut] = ener_extrpolate[mask_rmax_to_rcut]
return ener

def _extrapolate_rmax_rcut(self) -> torch.Tensor:
Fixed Show fixed Hide fixed
"""Soomth extrapolation between table upper boundary and rcut.

This method should only be used when the table upper boundary `rmax` is smaller than `rcut`, and
the table upper boundary values are not zeros. To simplify the problem, we use a single
cubic spline between `rmax` and `rcut` for each pair of atom types. One can substitute this extrapolation
to higher order polynomials if needed.

There are two scenarios:
1. `ruct` - `rmax` >= hh:
Set values at the grid point right before `rcut` to 0, and perform exterapolation between
the grid point and `rmax`, this allows smooth decay to 0 at `rcut`.
2. `rcut` - `rmax` < hh:
Set values at `rmax + hh` to 0, and perform extrapolation between `rmax` and `rmax + hh`.

Returns
-------
torch.Tensor
The cubic spline coefficients for each pair of atom types. (ntype, ntype, 1, 4)
"""
rmax_val = torch.from_numpy(
self.tab.vdata[self.tab.vdata[:, 0] == self.tab.rmax]
)
pre_rmax_val = torch.from_numpy(
self.tab.vdata[self.tab.vdata[:, 0] == self.tab.rmax - self.tab.hh]
)

# check if decays to `0` at rmax, if yes, no extrapolation is needed.
if torch.all(rmax_val[:, 1:] == 0):
return

Check warning on line 248 in deepmd/pt/model/model/pair_tab.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/model/pair_tab.py#L248

Added line #L248 was not covered by tests
else:
if self.rcut - self.tab.rmax >= self.tab.hh:
rcut_idx = int(self.rcut / self.tab.hh - self.tab.rmin / self.tab.hh)
rcut_val = torch.tensor(self.tab.vdata[rcut_idx, :]).reshape(1, -1)
grid = torch.concatenate([rmax_val, rcut_val], axis=0)
else:
# the last two rows will be the rmax, and rmax+hh
grid = torch.from_numpy(self.tab.vdata[-2:, :])
passin_slope = (
((rmax_val - pre_rmax_val) / self.tab.hh)[:, 1:].squeeze(0)
if self.tab.rmax > self.tab.hh
else torch.zeros_like(rmax_val[:, 1:]).squeeze(0)
) # the slope at the end of table for each ntype pairs (ntypes,ntypes,1)
extrapolate_coef = torch.from_numpy(
self.tab._make_data(self.ntypes, 1, grid, self.tab.hh, passin_slope)
).reshape(self.ntypes, self.ntypes, 4)
return extrapolate_coef.unsqueeze(2)

@staticmethod
def _get_pairwise_dist(coords: torch.Tensor) -> torch.Tensor:
"""Get pairwise distance `dr`.

Parameters
----------
coords : torch.Tensor
The coordinate of the atoms shape of (nframes * nall * 3).

Returns
-------
torch.Tensor
The pairwise distance between the atoms (nframes * nall * nall * 3).

Examples
--------
coords = torch.tensor([[
[0,0,0],
[1,3,5],
[2,4,6]
]])

dist = tensor([[
[[ 0, 0, 0],
[-1, -3, -5],
[-2, -4, -6]],

[[ 1, 3, 5],
[ 0, 0, 0],
[-1, -1, -1]],

[[ 2, 4, 6],
[ 1, 1, 1],
[ 0, 0, 0]]
]])
"""
return coords.unsqueeze(2) - coords.unsqueeze(1)

@staticmethod
def _extract_spline_coefficient(
i_type: torch.Tensor,
j_type: torch.Tensor,
idx: torch.Tensor,
tab_data: torch.Tensor,
nspline: int,
) -> torch.Tensor:
"""Extract the spline coefficient from the table.

Parameters
----------
i_type : torch.Tensor
The integer representation of atom type for all local atoms for all frames. (nframes, nloc)
j_type : torch.Tensor
The integer representation of atom type for all neighbour atoms of all local atoms for all frames. (nframes, nloc, nnei)
idx : torch.Tensor
The index of the spline coefficient. (nframes, nloc, nnei)
tab_data : torch.Tensor
The table storing all the spline coefficient. (ntype, ntype, nspline, 4)
nspline : int
The number of splines in the table.

Returns
-------
torch.Tensor
The spline coefficient. (nframes, nloc, nnei, 4), shape may be squeezed.

"""
# (nframes, nloc, nnei)
expanded_i_type = i_type.unsqueeze(-1).expand(-1, -1, j_type.shape[-1])

# (nframes, nloc, nnei, nspline, 4)
expanded_tab_data = tab_data[expanded_i_type, j_type]

# (nframes, nloc, nnei, 1, 4)
expanded_idx = idx.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, -1, 4)

# handle the case where idx is beyond the number of splines
clipped_indices = torch.clamp(expanded_idx, 0, nspline - 1).to(torch.int64)

# (nframes, nloc, nnei, 4)
final_coef = torch.gather(expanded_tab_data, 3, clipped_indices).squeeze()

# when the spline idx is beyond the table, all spline coefficients are set to `0`, and the resulting ener corresponding to the idx is also `0`.
final_coef[expanded_idx.squeeze() >= nspline] = 0

return final_coef

@staticmethod
def _calcualte_ener(coef: torch.Tensor, uu: torch.Tensor) -> torch.Tensor:
"""Calculate energy using spline coeeficients.

Parameters
----------
coef : torch.Tensor
The spline coefficients. (nframes, nloc, nnei, 4)
uu : torch.Tensor
The atom displancemnt used in interpolation and extrapolation (nframes, nloc, nnei)

Returns
-------
torch.Tensor
The atomic energy for all local atoms for all frames. (nframes, nloc, nnei)
"""
a3, a2, a1, a0 = torch.unbind(coef, dim=-1)
etmp = (a3 * uu + a2) * uu + a1 # this should be elementwise operations.
ener = (
etmp * uu + a0
) # this energy has the linear extrapolated value when rcut > rmax
return ener
Loading
Loading