Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support atomic/relative model deviation in CLI #2801

Merged
merged 5 commits into from
Sep 12, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 93 additions & 13 deletions deepmd/infer/model_devi.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,9 @@


def calc_model_devi_f(
fs: np.ndarray, real_f: Optional[np.ndarray] = None
fs: np.ndarray,
real_f: Optional[np.ndarray] = None,
relative: Optional[float] = None,
) -> Tuple[np.ndarray]:
"""Calculate model deviation of force.

Expand All @@ -33,6 +35,10 @@ def calc_model_devi_f(
real_f : numpy.ndarray or None
real force, size of `n_frames x n_atoms x 3`. If given,
the RMS real error is calculated instead.
relative : float, default: None
If given, calculate the relative model deviation of force. The
value is the level parameter for computing the relative model
deviation of the force.

Returns
-------
Expand All @@ -42,17 +48,29 @@ def calc_model_devi_f(
minimum deviation of force in all atoms
avg_devi_f : numpy.ndarray
average deviation of force in all atoms
fs_devi : numpy.ndarray
deviation of force in all atoms
njzjz marked this conversation as resolved.
Show resolved Hide resolved
"""
if real_f is None:
fs_devi = np.linalg.norm(np.std(fs, axis=0), axis=-1)
else:
fs_devi = np.linalg.norm(
np.sqrt(np.mean(np.square(fs - real_f), axis=0)), axis=-1
)
if relative is not None:
if real_f is None:
# if real force is not given, the magnitude is calculated from mean value of four models
# See DeepPotModelDevi::compute_relative_std_f
# See also Eq. 71 in DeePMD-kit v2 paepr
magnitude = np.linalg.norm(np.mean(fs, axis=0), axis=-1)
else:
# otherwise, the magnitude is calculated from the real force
magnitude = np.linalg.norm(real_f, axis=-1)
fs_devi /= magnitude + relative
max_devi_f = np.max(fs_devi, axis=-1)
min_devi_f = np.min(fs_devi, axis=-1)
avg_devi_f = np.mean(fs_devi, axis=-1)
return max_devi_f, min_devi_f, avg_devi_f
return max_devi_f, min_devi_f, avg_devi_f, fs_devi


def calc_model_devi_e(
Expand Down Expand Up @@ -86,7 +104,9 @@ def calc_model_devi_e(


def calc_model_devi_v(
vs: np.ndarray, real_v: Optional[np.ndarray] = None
vs: np.ndarray,
real_v: Optional[np.ndarray] = None,
relative: Optional[float] = None,
) -> Tuple[np.ndarray]:
"""Calculate model deviation of virial.

Expand All @@ -97,6 +117,10 @@ def calc_model_devi_v(
real_v : numpy.ndarray
real virial, size of `n_frames x 9`. If given,
the RMS real error is calculated instead.
relative : float, default: None
If given, calculate the relative model deviation of virial. The
value is the level parameter for computing the relative model
deviation of the virial.

Returns
-------
Expand All @@ -111,13 +135,25 @@ def calc_model_devi_v(
vs_devi = np.std(vs, axis=0)
else:
vs_devi = np.sqrt(np.mean(np.square(vs - real_v), axis=0))
if relative is not None:
if real_v is None:
# if real virial is not given, the magnitude is calculated from mean value of four models
# See DeepPotModelDevi::compute_relative_std_v
# See also Eq. 72 in DeePMD-kit v2 paepr
magnitude = np.linalg.norm(np.mean(vs, axis=0), axis=-1)
else:
# otherwise, the magnitude is calculated from the real virial
magnitude = np.linalg.norm(real_v, axis=-1)
vs_devi /= magnitude + relative
max_devi_v = np.max(vs_devi, axis=-1)
min_devi_v = np.min(vs_devi, axis=-1)
avg_devi_v = np.linalg.norm(vs_devi, axis=-1) / 3
return max_devi_v, min_devi_v, avg_devi_v


def write_model_devi_out(devi: np.ndarray, fname: str, header: str = ""):
def write_model_devi_out(
devi: np.ndarray, fname: str, header: str = "", atomic: bool = False
):
"""Write output of model deviation.

Parameters
Expand All @@ -128,8 +164,13 @@ def write_model_devi_out(devi: np.ndarray, fname: str, header: str = ""):
the file name to dump
header : str, default=""
the header to dump
atomic : bool, default: False
whether atomic model deviation is printed
"""
assert devi.shape[1] == 8
if not atomic:
assert devi.shape[1] == 8
else:
assert devi.shape[1] > 8
header = "%s\n%10s" % (header, "step")
for item in "vf":
header += "%19s%19s%19s" % (
Expand All @@ -138,11 +179,13 @@ def write_model_devi_out(devi: np.ndarray, fname: str, header: str = ""):
f"avg_devi_{item}",
)
header += "%19s" % "devi_e"
if atomic:
header += "%19s" % "atm_devi_f(N)"
with open(fname, "ab") as fp:
np.savetxt(
fp,
devi,
fmt=["%12d"] + ["%19.6e" for _ in range(7)],
fmt=["%12d"] + ["%19.6e" for _ in range(devi.shape[1] - 1)],
delimiter="",
header=header,
)
Expand Down Expand Up @@ -175,6 +218,9 @@ def calc_model_devi(
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
real_data: Optional[dict] = None,
atomic: bool = False,
relative: Optional[float] = None,
relative_v: Optional[float] = None,
):
"""Python interface to calculate model deviation.

Expand All @@ -200,6 +246,16 @@ def calc_model_devi(
atomic specific parameters
real_data : dict, optional
real data to calculate RMS real error
atomic : bool, default: False
If True, calculate the force model deviation of each atom.
relative : float, default: None
If given, calculate the relative model deviation of force. The
value is the level parameter for computing the relative model
deviation of the force.
relative_v : float, default: None
If given, calculate the relative model deviation of virial. The
value is the level parameter for computing the relative model
deviation of the virial.

Returns
-------
Expand Down Expand Up @@ -241,16 +297,22 @@ def calc_model_devi(

devi = [np.arange(coord.shape[0]) * frequency]
if real_data is None:
devi += list(calc_model_devi_v(virials))
devi += list(calc_model_devi_f(forces))
devi += list(calc_model_devi_v(virials, relative=relative_v))
devi_f = list(calc_model_devi_f(forces, relative=relative))
devi += devi_f[:3]
devi.append(calc_model_devi_e(energies))
else:
devi += list(calc_model_devi_v(virials, real_data["virial"]))
devi += list(calc_model_devi_f(forces, real_data["force"]))
devi += list(
calc_model_devi_v(virials, real_data["virial"], relative=relative_v)
)
devi_f = list(calc_model_devi_f(forces, real_data["force"], relative=relative))
devi += devi_f[:3]
devi.append(calc_model_devi_e(energies, real_data["energy"]))
devi = np.vstack(devi).T
if atomic:
devi = np.concatenate([devi, devi_f[3]], axis=1)
if fname:
write_model_devi_out(devi, fname)
write_model_devi_out(devi, fname, atomic=atomic)
return devi


Expand All @@ -262,6 +324,9 @@ def make_model_devi(
output: str,
frequency: int,
real_error: bool = False,
atomic: bool = False,
relative: Optional[float] = None,
relative_v: Optional[float] = None,
**kwargs,
):
"""Make model deviation calculation.
Expand All @@ -282,6 +347,16 @@ def make_model_devi(
This paramter is used to determine the index in the output file.
real_error : bool, default: False
If True, calculate the RMS real error instead of model deviation.
atomic : bool, default: False
If True, calculate the force model deviation of each atom.
relative : float, default: None
If given, calculate the relative model deviation of force. The
value is the level parameter for computing the relative model
deviation of the force.
relative_v : float, default: None
If given, calculate the relative model deviation of virial. The
value is the level parameter for computing the relative model
deviation of the virial.
**kwargs
Arbitrary keyword arguments.
"""
Expand All @@ -305,7 +380,9 @@ def make_model_devi(

for system in all_sys:
# create data-system
dp_data = DeepmdData(system, set_prefix, shuffle_test=False, type_map=tmap)
dp_data = DeepmdData(
system, set_prefix, shuffle_test=False, type_map=tmap, sort_atoms=False
)
if first_dp.get_dim_fparam() > 0:
dp_data.add(
"fparam",
Expand Down Expand Up @@ -385,11 +462,14 @@ def make_model_devi(
fparam=fparam,
aparam=aparam,
real_data=real_data,
atomic=atomic,
relative=relative,
relative_v=relative_v,
)
nframes_tot += coord.shape[0]
devis.append(devi)
devis = np.vstack(devis)
devis[:, 0] = np.arange(nframes_tot) * frequency
write_model_devi_out(devis, output, header=system)
write_model_devi_out(devis, output, header=system, atomic=atomic)
devis_coll.append(devis)
return devis_coll
16 changes: 16 additions & 0 deletions deepmd_cli/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -448,6 +448,22 @@ def main_parser() -> argparse.ArgumentParser:
default=False,
help="Calculate the RMS real error of the model. The real data should be given in the systems.",
)
parser_model_devi.add_argument(
"--atomic",
action="store_true",
default=False,
help="Print the force model deviation of each atom.",
)
parser_model_devi.add_argument(
"--relative",
type=float,
help="Calculate the relative model deviation of force. The level parameter for computing the relative model deviation of the force should be given.",
)
parser_model_devi.add_argument(
"--relative_v",
type=float,
help="Calculate the relative model deviation of virial. The level parameter for computing the relative model deviation of the virial should be given.",
)

# * convert models
parser_transform = subparsers.add_parser(
Expand Down
11 changes: 11 additions & 0 deletions doc/test/model-deviation.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,14 @@ optional arguments:
```

For more details concerning the definition of model deviation and its application, please refer to [Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Computer Physics Communications, 2020, 253, 107206.](https://doi.org/10.1016/j.cpc.2020.107206)

## Relative model deviation

By default, the model deviation is output in absolute value. If the argument `--relative` is passed, then the relative model deviation of the force will be output, including values output by the argument `--atomic`. The relative model deviation of the force on atom $i$ is defined by

$$E_{f_i}=\frac{\left|D_{f_i}\right|}{\left|f_i\right|+l}$$

where $D_{f_i}$ is the absolute model deviation of the force on atom $i$, $f_i$ is the norm of the force and $l$ is provided as the parameter of the keyword `relative`.
If the argument `--relative_v` is set, then the relative model deviation of the virial will be output instead of the absolute value, with the same definition of that of the force:

$$E_{v_i}=\frac{\left|D_{v_i}\right|}{\left|v_i\right|+l}$$
2 changes: 1 addition & 1 deletion doc/third-party/lammps-command.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ and the model deviation will be computed among all models every `out_freq` times
<i>fparam_from_compute</i> value = id
id = compute id used to update the frame parameter.
<i>atomic</i> = no value is required.
If this keyword is set, the model deviation of each atom will be output.
If this keyword is set, the force model deviation of each atom will be output.
<i>relative</i> value = level
level = The level parameter for computing the relative model deviation of the force
<i>relative_v</i> value = level
Expand Down
89 changes: 89 additions & 0 deletions source/tests/test_model_devi.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,95 @@ def test_make_model_devi_real_erorr(self):
6,
)

def test_make_model_devi_atomic_relative(self):
_, expected_f, expected_v = self.graphs[0].eval(
self.coord[0], self.box[0], self.atype
)
_, expected_f2, expected_v2 = self.graphs[1].eval(
self.coord[0], self.box[0], self.atype
)
expected_f = expected_f.reshape((-1, 3))
expected_f2 = expected_f2.reshape((-1, 3))
expected_v = expected_v.reshape((-1, 3))
expected_v2 = expected_v2.reshape((-1, 3))
relative = 1.0
make_model_devi(
models=self.graph_dirs,
system=self.data_dir,
set_prefix="set",
output=self.output,
frequency=self.freq,
atomic=True,
relative=relative,
)
md = np.loadtxt(self.output)
# copy from lammps test
norm = np.linalg.norm(np.mean([expected_f, expected_f2], axis=0), axis=1)
expected_md_f = np.linalg.norm(
np.std([expected_f, expected_f2], axis=0), axis=1
)
expected_md_f /= norm + relative
np.testing.assert_allclose(md[8:], expected_md_f, 6)
np.testing.assert_allclose(md[7], self.expect[7], 6)
np.testing.assert_allclose(md[4], np.max(expected_md_f), 6)
np.testing.assert_allclose(md[5], np.min(expected_md_f), 6)
np.testing.assert_allclose(md[6], np.mean(expected_md_f), 6)
expected_md_v = (
np.std([np.sum(expected_v, axis=0), np.sum(expected_v2, axis=0)], axis=0)
/ 6
)
np.testing.assert_allclose(md[1], np.max(expected_md_v), 6)
np.testing.assert_allclose(md[2], np.min(expected_md_v), 6)
np.testing.assert_allclose(md[3], np.sqrt(np.mean(np.square(expected_md_v))), 6)

def test_make_model_devi_atomic_relative_v(self):
_, expected_f, expected_v = self.graphs[0].eval(
self.coord[0], self.box[0], self.atype
)
_, expected_f2, expected_v2 = self.graphs[1].eval(
self.coord[0], self.box[0], self.atype
)
expected_f = expected_f.reshape((-1, 3))
expected_f2 = expected_f2.reshape((-1, 3))
expected_v = expected_v.reshape((-1, 3))
expected_v2 = expected_v2.reshape((-1, 3))
relative = 1.0
make_model_devi(
models=self.graph_dirs,
system=self.data_dir,
set_prefix="set",
output=self.output,
frequency=self.freq,
atomic=True,
relative_v=relative,
)
md = np.loadtxt(self.output)
# copy from lammps test
expected_md_f = np.linalg.norm(
np.std([expected_f, expected_f2], axis=0), axis=1
)
np.testing.assert_allclose(md[8:], expected_md_f, 6)
np.testing.assert_allclose(md[7], self.expect[7], 6)
np.testing.assert_allclose(md[4], np.max(expected_md_f), 6)
np.testing.assert_allclose(md[5], np.min(expected_md_f), 6)
np.testing.assert_allclose(md[6], np.mean(expected_md_f), 6)
expected_md_v = (
np.std([np.sum(expected_v, axis=0), np.sum(expected_v2, axis=0)], axis=0)
/ 6
)
norm = (
np.abs(
np.mean(
[np.sum(expected_v, axis=0), np.sum(expected_v2, axis=0)], axis=0
)
)
/ 6
)
expected_md_v /= norm + relative
np.testing.assert_allclose(md[1], np.max(expected_md_v), 6)
np.testing.assert_allclose(md[2], np.min(expected_md_v), 6)
np.testing.assert_allclose(md[3], np.sqrt(np.mean(np.square(expected_md_v))), 6)

def tearDown(self):
for pb in self.graph_dirs:
os.remove(pb)
Expand Down