Skip to content

Commit

Permalink
feat(pt): consistent "frozen" model (#3450)
Browse files Browse the repository at this point in the history
This PR is based on #3449, as the test needs #3449 to pass.

Add a consistent `frozen` model in pt. Both TF and PT now support using
models in any format.

---------

Signed-off-by: Jinzhe Zeng <[email protected]>
  • Loading branch information
njzjz authored Mar 12, 2024
1 parent 9bcae14 commit da9b526
Show file tree
Hide file tree
Showing 9 changed files with 387 additions and 5 deletions.
4 changes: 4 additions & 0 deletions deepmd/dpmodel/utils/network.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,10 @@ def deserialize(cls, data: dict) -> "NativeLayer":
variables.get("b", None),
variables.get("idt", None),
)
if obj.b is not None:
obj.b = obj.b.ravel()
if obj.idt is not None:
obj.idt = obj.idt.ravel()
obj.check_shape_consistency()
return obj

Expand Down
4 changes: 4 additions & 0 deletions deepmd/pt/model/model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,9 @@
from .ener_model import (
EnergyModel,
)
from .frozen import (
FrozenModel,
)
from .make_hessian_model import (
make_hessian_model,
)
Expand Down Expand Up @@ -173,6 +176,7 @@ def get_model(model_params):
"get_model",
"DPModel",
"EnergyModel",
"FrozenModel",
"SpinModel",
"SpinEnergyModel",
"DPZBLModel",
Expand Down
174 changes: 174 additions & 0 deletions deepmd/pt/model/model/frozen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import json
import tempfile
from typing import (
Dict,
List,
Optional,
)

import torch

from deepmd.dpmodel.output_def import (
FittingOutputDef,
)
from deepmd.entrypoints.convert_backend import (
convert_backend,
)
from deepmd.pt.model.model.model import (
BaseModel,
)


@BaseModel.register("frozen")
class FrozenModel(BaseModel):
"""Load model from a frozen model, which cannot be trained.
Parameters
----------
model_file : str
The path to the frozen model
"""

def __init__(self, model_file: str, **kwargs):
super().__init__(**kwargs)
self.model_file = model_file
if model_file.endswith(".pth"):
self.model = torch.jit.load(model_file)
else:
# try to convert from other formats
with tempfile.NamedTemporaryFile(suffix=".pth") as f:
convert_backend(INPUT=model_file, OUTPUT=f.name)
self.model = torch.jit.load(f.name)

@torch.jit.export
def fitting_output_def(self) -> FittingOutputDef:
"""Get the output def of developer implemented atomic models."""
return self.model.fitting_output_def()

@torch.jit.export
def get_rcut(self) -> float:
"""Get the cut-off radius."""
return self.model.get_rcut()

@torch.jit.export
def get_type_map(self) -> List[str]:
"""Get the type map."""
return self.model.get_type_map()

@torch.jit.export
def get_sel(self) -> List[int]:
"""Returns the number of selected atoms for each type."""
return self.model.get_sel()

@torch.jit.export
def get_dim_fparam(self) -> int:
"""Get the number (dimension) of frame parameters of this atomic model."""
return self.model.get_dim_fparam()

@torch.jit.export
def get_dim_aparam(self) -> int:
"""Get the number (dimension) of atomic parameters of this atomic model."""
return self.model.get_dim_aparam()

@torch.jit.export
def get_sel_type(self) -> List[int]:
"""Get the selected atom types of this model.
Only atoms with selected atom types have atomic contribution
to the result of the model.
If returning an empty list, all atom types are selected.
"""
return self.model.get_sel_type()

@torch.jit.export
def is_aparam_nall(self) -> bool:
"""Check whether the shape of atomic parameters is (nframes, nall, ndim).
If False, the shape is (nframes, nloc, ndim).
"""
return self.model.is_aparam_nall()

@torch.jit.export
def mixed_types(self) -> bool:
"""If true, the model
1. assumes total number of atoms aligned across frames;
2. uses a neighbor list that does not distinguish different atomic types.
If false, the model
1. assumes total number of atoms of each atom type aligned across frames;
2. uses a neighbor list that distinguishes different atomic types.
"""
return self.model.mixed_types()

@torch.jit.export
def forward(
self,
coord,
atype,
box: Optional[torch.Tensor] = None,
fparam: Optional[torch.Tensor] = None,
aparam: Optional[torch.Tensor] = None,
do_atomic_virial: bool = False,
) -> Dict[str, torch.Tensor]:
return self.model.forward(
coord,
atype,
box=box,
fparam=fparam,
aparam=aparam,
do_atomic_virial=do_atomic_virial,
)

@torch.jit.export
def get_model_def_script(self) -> str:
"""Get the model definition script."""
# try to use the original script instead of "frozen model"
# Note: this cannot change the script of the parent model
# it may still try to load hard-coded filename, which might
# be a problem
return self.model.get_model_def_script()

def serialize(self) -> dict:
from deepmd.pt.model.model import (
get_model,
)

# try to recover the original model
model_def_script = json.loads(self.get_model_def_script())
model = get_model(model_def_script)
model.load_state_dict(self.model.state_dict())
return model.serialize()

@classmethod
def deserialize(cls, data: dict):
raise RuntimeError("Should not touch here.")

@torch.jit.export
def get_nnei(self) -> int:
"""Returns the total number of selected neighboring atoms in the cut-off radius."""
return self.model.get_nnei()

@torch.jit.export
def get_nsel(self) -> int:
"""Returns the total number of selected neighboring atoms in the cut-off radius."""
return self.model.get_nsel()

@classmethod
def update_sel(cls, global_jdata: dict, local_jdata: dict):
"""Update the selection and perform neighbor statistics.
Parameters
----------
global_jdata : dict
The global data, containing the training section
local_jdata : dict
The local data refer to the current class
"""
return local_jdata

@torch.jit.export
def model_output_type(self) -> str:
"""Get the output type for the model."""
return self.model.model_output_type()
4 changes: 2 additions & 2 deletions deepmd/tf/fit/ener.py
Original file line number Diff line number Diff line change
Expand Up @@ -868,7 +868,7 @@ def deserialize(cls, data: dict, suffix: str = ""):
data["nets"],
suffix=suffix,
)
fitting.bias_atom_e = data["@variables"]["bias_atom_e"]
fitting.bias_atom_e = data["@variables"]["bias_atom_e"].ravel()
if fitting.numb_fparam > 0:
fitting.fparam_avg = data["@variables"]["fparam_avg"]
fitting.fparam_inv_std = data["@variables"]["fparam_inv_std"]
Expand Down Expand Up @@ -922,7 +922,7 @@ def serialize(self, suffix: str = "") -> dict:
suffix=suffix,
),
"@variables": {
"bias_atom_e": self.bias_atom_e,
"bias_atom_e": self.bias_atom_e.reshape(-1, 1),
"fparam_avg": self.fparam_avg,
"fparam_inv_std": self.fparam_inv_std,
"aparam_avg": self.aparam_avg,
Expand Down
35 changes: 34 additions & 1 deletion deepmd/tf/model/frozen.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import json
import os
import tempfile
from enum import (
Enum,
)
Expand All @@ -7,6 +10,9 @@
Union,
)

from deepmd.entrypoints.convert_backend import (
convert_backend,
)
from deepmd.infer.deep_pot import (
DeepPot,
)
Expand All @@ -24,6 +30,10 @@
from deepmd.tf.loss.loss import (
Loss,
)
from deepmd.tf.utils.graph import (
get_tensor_by_name_from_graph,
load_graph_def,
)

from .model import (
Model,
Expand All @@ -43,7 +53,14 @@ class FrozenModel(Model):
def __init__(self, model_file: str, **kwargs):
super().__init__(**kwargs)
self.model_file = model_file
self.model = DeepPotential(model_file)
if not model_file.endswith(".pb"):
# try to convert from other formats
with tempfile.NamedTemporaryFile(
suffix=".pb", dir=os.curdir, delete=False
) as f:
convert_backend(INPUT=model_file, OUTPUT=f.name)
self.model_file = f.name
self.model = DeepPotential(self.model_file)
if isinstance(self.model, DeepPot):
self.model_type = "ener"
else:
Expand Down Expand Up @@ -228,3 +245,19 @@ def update_sel(cls, global_jdata: dict, local_jdata: dict):
"""
# we don't know how to compress it, so no neighbor statistics here
return local_jdata

def serialize(self, suffix: str = "") -> dict:
# try to recover the original model
# the current graph contains a prefix "load",
# so it cannot used to recover the original model
graph, graph_def = load_graph_def(self.model_file)
t_jdata = get_tensor_by_name_from_graph(graph, "train_attr/training_script")
jdata = json.loads(t_jdata)
model = Model(**jdata["model"])
# important! must be called before serialize
model.init_variables(graph=graph, graph_def=graph_def)
return model.serialize()

@classmethod
def deserialize(cls, data: dict, suffix: str = ""):
raise RuntimeError("Should not touch here.")
3 changes: 2 additions & 1 deletion deepmd/tf/model/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -566,7 +566,8 @@ def deserialize(cls, data: dict, suffix: str = "") -> "Model":
"""
if cls is Model:
return Model.get_class_by_type(data.get("type", "standard")).deserialize(
data
data,
suffix=suffix,
)
raise NotImplementedError("Not implemented in class %s" % cls.__name__)

Expand Down
1 change: 0 additions & 1 deletion deepmd/utils/argcheck.py
Original file line number Diff line number Diff line change
Expand Up @@ -1461,7 +1461,6 @@ def frozen_model_args() -> Argument:
[
Argument("model_file", str, optional=False, doc=doc_model_file),
],
doc=doc_only_tf_supported,
)
return ca

Expand Down
Loading

0 comments on commit da9b526

Please sign in to comment.