Skip to content

Commit

Permalink
refactor: split Model and AtomicModel (#3438)
Browse files Browse the repository at this point in the history
Model is not inherited from AtomicModel anymore.

---------

Signed-off-by: Jinzhe Zeng <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
njzjz and pre-commit-ci[bot] authored Mar 11, 2024
1 parent 4c84514 commit a88a213
Show file tree
Hide file tree
Showing 23 changed files with 375 additions and 135 deletions.
12 changes: 8 additions & 4 deletions deepmd/dpmodel/atomic_model/make_base_atomic_model.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from abc import (
ABC,
abstractclassmethod,
abstractmethod,
)
from typing import (
Expand All @@ -13,6 +12,10 @@
from deepmd.dpmodel.output_def import (
FittingOutputDef,
)
from deepmd.utils.plugin import (
PluginVariant,
make_plugin_registry,
)


def make_base_atomic_model(
Expand All @@ -31,7 +34,7 @@ def make_base_atomic_model(
"""

class BAM(ABC):
class BAM(ABC, PluginVariant, make_plugin_registry("atomic model")):
"""Base Atomic Model provides the interfaces of an atomic model."""

@abstractmethod
Expand Down Expand Up @@ -128,8 +131,9 @@ def fwd(
def serialize(self) -> dict:
pass

@abstractclassmethod
def deserialize(cls):
@classmethod
@abstractmethod
def deserialize(cls, data: dict):
pass

def do_grad_r(
Expand Down
2 changes: 2 additions & 0 deletions deepmd/dpmodel/model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@
according to output variable definition
`deepmd.dpmodel.OutputVariableDef`.
All models should be inherited from :class:`deepmd.dpmodel.model.base_model.BaseModel`.
Models generated by `make_model` have already done it.
"""

from .dp_model import (
Expand Down
3 changes: 2 additions & 1 deletion deepmd/dpmodel/model/dp_model.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# SPDX-License-Identifier: LGPL-3.0-or-later


from deepmd.dpmodel.atomic_model import (
DPAtomicModel,
)
Expand All @@ -17,7 +18,7 @@

# use "class" to resolve "Variable not allowed in type expression"
@BaseModel.register("standard")
class DPModel(make_model(DPAtomicModel), BaseModel):
class DPModel(make_model(DPAtomicModel)):
@classmethod
def update_sel(cls, global_jdata: dict, local_jdata: dict):
"""Update the selection and perform neighbor statistics.
Expand Down
113 changes: 106 additions & 7 deletions deepmd/dpmodel/model/make_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,18 +4,26 @@
List,
Optional,
Tuple,
Type,
)

import numpy as np

from deepmd.dpmodel.atomic_model.base_atomic_model import (
BaseAtomicModel,
)
from deepmd.dpmodel.common import (
GLOBAL_ENER_FLOAT_PRECISION,
GLOBAL_NP_FLOAT_PRECISION,
PRECISION_DICT,
RESERVED_PRECISON_DICT,
NativeOP,
)
from deepmd.dpmodel.model.base_model import (
BaseModel,
)
from deepmd.dpmodel.output_def import (
FittingOutputDef,
ModelOutputDef,
OutputVariableCategory,
OutputVariableOperation,
Expand All @@ -34,7 +42,7 @@
)


def make_model(T_AtomicModel):
def make_model(T_AtomicModel: Type[BaseAtomicModel]):
"""Make a model as a derived class of an atomic model.
The model provide two interfaces.
Expand All @@ -57,16 +65,18 @@ def make_model(T_AtomicModel):
"""

class CM(T_AtomicModel, NativeOP):
class CM(NativeOP, BaseModel):
def __init__(
self,
*args,
# underscore to prevent conflict with normal inputs
atomic_model_: Optional[T_AtomicModel] = None,
**kwargs,
):
super().__init__(
*args,
**kwargs,
)
if atomic_model_ is not None:
self.atomic_model: T_AtomicModel = atomic_model_
else:
self.atomic_model: T_AtomicModel = T_AtomicModel(*args, **kwargs)
self.precision_dict = PRECISION_DICT
self.reverse_precision_dict = RESERVED_PRECISON_DICT
self.global_np_float_precision = GLOBAL_NP_FLOAT_PRECISION
Expand Down Expand Up @@ -208,7 +218,7 @@ def call_lower(
extended_coord, fparam=fparam, aparam=aparam
)
del extended_coord, fparam, aparam
atomic_ret = self.forward_common_atomic(
atomic_ret = self.atomic_model.forward_common_atomic(
cc_ext,
extended_atype,
nlist,
Expand Down Expand Up @@ -377,4 +387,93 @@ def _format_nlist(
assert ret.shape[-1] == nnei
return ret

def do_grad_r(
self,
var_name: Optional[str] = None,
) -> bool:
"""Tell if the output variable `var_name` is r_differentiable.
if var_name is None, returns if any of the variable is r_differentiable.
"""
return self.atomic_model.do_grad_r(var_name)

def do_grad_c(
self,
var_name: Optional[str] = None,
) -> bool:
"""Tell if the output variable `var_name` is c_differentiable.
if var_name is None, returns if any of the variable is c_differentiable.
"""
return self.atomic_model.do_grad_c(var_name)

def serialize(self) -> dict:
return self.atomic_model.serialize()

@classmethod
def deserialize(cls, data) -> "CM":
return cls(atomic_model_=T_AtomicModel.deserialize(data))

def get_dim_fparam(self) -> int:
"""Get the number (dimension) of frame parameters of this atomic model."""
return self.atomic_model.get_dim_fparam()

def get_dim_aparam(self) -> int:
"""Get the number (dimension) of atomic parameters of this atomic model."""
return self.atomic_model.get_dim_aparam()

def get_sel_type(self) -> List[int]:
"""Get the selected atom types of this model.
Only atoms with selected atom types have atomic contribution
to the result of the model.
If returning an empty list, all atom types are selected.
"""
return self.atomic_model.get_sel_type()

def is_aparam_nall(self) -> bool:
"""Check whether the shape of atomic parameters is (nframes, nall, ndim).
If False, the shape is (nframes, nloc, ndim).
"""
return self.atomic_model.is_aparam_nall()

def get_rcut(self) -> float:
"""Get the cut-off radius."""
return self.atomic_model.get_rcut()

def get_type_map(self) -> List[str]:
"""Get the type map."""
return self.atomic_model.get_type_map()

def get_nsel(self) -> int:
"""Returns the total number of selected neighboring atoms in the cut-off radius."""
return self.atomic_model.get_nsel()

def get_nnei(self) -> int:
"""Returns the total number of selected neighboring atoms in the cut-off radius."""
return self.atomic_model.get_nnei()

def get_model_def_script(self) -> str:
"""Get the model definition script."""
return self.atomic_model.get_model_def_script()

def get_sel(self) -> List[int]:
"""Returns the number of selected atoms for each type."""
return self.atomic_model.get_sel()

def mixed_types(self) -> bool:
"""If true, the model
1. assumes total number of atoms aligned across frames;
2. uses a neighbor list that does not distinguish different atomic types.
If false, the model
1. assumes total number of atoms of each atom type aligned across frames;
2. uses a neighbor list that distinguishes different atomic types.
"""
return self.atomic_model.mixed_types()

def atomic_output_def(self) -> FittingOutputDef:
"""Get the output def of the atomic model."""
return self.atomic_model.atomic_output_def()

return CM
31 changes: 25 additions & 6 deletions deepmd/pt/model/atomic_model/base_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,9 @@
AtomExcludeMask,
PairExcludeMask,
)
from deepmd.utils.path import (
DPPath,
)

BaseAtomicModel_ = make_base_atomic_model(torch.Tensor)

Expand Down Expand Up @@ -55,12 +58,6 @@ def reinit_pair_exclude(
else:
self.pair_excl = PairExcludeMask(self.get_ntypes(), self.pair_exclude_types)

# export public methods that are not abstract
get_nsel = torch.jit.export(BaseAtomicModel_.get_nsel)
get_nnei = torch.jit.export(BaseAtomicModel_.get_nnei)
get_ntypes = torch.jit.export(BaseAtomicModel_.get_ntypes)

@torch.jit.export
def get_model_def_script(self) -> str:
return self.model_def_script

Expand Down Expand Up @@ -126,3 +123,25 @@ def serialize(self) -> dict:
"atom_exclude_types": self.atom_exclude_types,
"pair_exclude_types": self.pair_exclude_types,
}

def compute_or_load_stat(
self,
sampled_func,
stat_file_path: Optional[DPPath] = None,
):
"""
Compute or load the statistics parameters of the model,
such as mean and standard deviation of descriptors or the energy bias of the fitting net.
When `sampled` is provided, all the statistics parameters will be calculated (or re-calculated for update),
and saved in the `stat_file_path`(s).
When `sampled` is not provided, it will check the existence of `stat_file_path`(s)
and load the calculated statistics parameters.
Parameters
----------
sampled_func
The sampled data frames from different data systems.
stat_file_path
The path to the statistics files.
"""
raise NotImplementedError
4 changes: 0 additions & 4 deletions deepmd/pt/model/atomic_model/dp_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,17 +223,14 @@ def wrapped_sampler():
if self.fitting_net is not None:
self.fitting_net.compute_output_stats(wrapped_sampler, stat_file_path)

@torch.jit.export
def get_dim_fparam(self) -> int:
"""Get the number (dimension) of frame parameters of this atomic model."""
return self.fitting_net.get_dim_fparam()

@torch.jit.export
def get_dim_aparam(self) -> int:
"""Get the number (dimension) of atomic parameters of this atomic model."""
return self.fitting_net.get_dim_aparam()

@torch.jit.export
def get_sel_type(self) -> List[int]:
"""Get the selected atom types of this model.
Expand All @@ -243,7 +240,6 @@ def get_sel_type(self) -> List[int]:
"""
return self.fitting_net.get_sel_type()

@torch.jit.export
def is_aparam_nall(self) -> bool:
"""Check whether the shape of atomic parameters is (nframes, nall, ndim).
Expand Down
6 changes: 0 additions & 6 deletions deepmd/pt/model/atomic_model/linear_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,12 +96,10 @@ def mixed_types(self) -> bool:
"""
return True

@torch.jit.export
def get_rcut(self) -> float:
"""Get the cut-off radius."""
return max(self.get_model_rcuts())

@torch.jit.export
def get_type_map(self) -> List[str]:
"""Get the type map."""
return self.type_map
Expand Down Expand Up @@ -292,18 +290,15 @@ def _compute_weight(
"""This should be a list of user defined weights that matches the number of models to be combined."""
raise NotImplementedError

@torch.jit.export
def get_dim_fparam(self) -> int:
"""Get the number (dimension) of frame parameters of this atomic model."""
# tricky...
return max([model.get_dim_fparam() for model in self.models])

@torch.jit.export
def get_dim_aparam(self) -> int:
"""Get the number (dimension) of atomic parameters of this atomic model."""
return max([model.get_dim_aparam() for model in self.models])

@torch.jit.export
def get_sel_type(self) -> List[int]:
"""Get the selected atom types of this model.
Expand All @@ -324,7 +319,6 @@ def get_sel_type(self) -> List[int]:
)
).tolist()

@torch.jit.export
def is_aparam_nall(self) -> bool:
"""Check whether the shape of atomic parameters is (nframes, nall, ndim).
Expand Down
6 changes: 0 additions & 6 deletions deepmd/pt/model/atomic_model/pairtab_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,11 +139,9 @@ def fitting_output_def(self) -> FittingOutputDef:
]
)

@torch.jit.export
def get_rcut(self) -> float:
return self.rcut

@torch.jit.export
def get_type_map(self) -> List[str]:
return self.type_map

Expand Down Expand Up @@ -454,17 +452,14 @@ def _calculate_ener(coef: torch.Tensor, uu: torch.Tensor) -> torch.Tensor:
ener = etmp * uu + a0 # this energy has the extrapolated value when rcut > rmax
return ener

@torch.jit.export
def get_dim_fparam(self) -> int:
"""Get the number (dimension) of frame parameters of this atomic model."""
return 0

@torch.jit.export
def get_dim_aparam(self) -> int:
"""Get the number (dimension) of atomic parameters of this atomic model."""
return 0

@torch.jit.export
def get_sel_type(self) -> List[int]:
"""Get the selected atom types of this model.
Expand All @@ -474,7 +469,6 @@ def get_sel_type(self) -> List[int]:
"""
return []

@torch.jit.export
def is_aparam_nall(self) -> bool:
"""Check whether the shape of atomic parameters is (nframes, nall, ndim).
Expand Down
Loading

0 comments on commit a88a213

Please sign in to comment.