-
Notifications
You must be signed in to change notification settings - Fork 522
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
159 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
import numpy as np | ||
from common import ( | ||
DataSystem, | ||
gen_data, | ||
j_loader, | ||
) | ||
|
||
from deepmd.common import ( | ||
j_must_have, | ||
) | ||
from deepmd.descriptor.se_a_ebd_v2 import ( | ||
DescrptSeAEbdV2, | ||
) | ||
from deepmd.env import ( | ||
tf, | ||
) | ||
from deepmd.fit import ( | ||
EnerFitting, | ||
) | ||
from deepmd.model import ( | ||
EnerModel, | ||
) | ||
from deepmd.utils.type_embed import ( | ||
TypeEmbedNet, | ||
) | ||
|
||
GLOBAL_ENER_FLOAT_PRECISION = tf.float64 | ||
GLOBAL_TF_FLOAT_PRECISION = tf.float64 | ||
GLOBAL_NP_FLOAT_PRECISION = np.float64 | ||
|
||
|
||
class TestModel(tf.test.TestCase): | ||
def setUp(self): | ||
gen_data() | ||
|
||
def test_model(self): | ||
jfile = "water_se_a_ebd.json" | ||
jdata = j_loader(jfile) | ||
|
||
systems = j_must_have(jdata, "systems") | ||
set_pfx = j_must_have(jdata, "set_prefix") | ||
batch_size = j_must_have(jdata, "batch_size") | ||
test_size = j_must_have(jdata, "numb_test") | ||
batch_size = 1 | ||
test_size = 1 | ||
stop_batch = j_must_have(jdata, "stop_batch") | ||
rcut = j_must_have(jdata["model"]["descriptor"], "rcut") | ||
|
||
data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) | ||
|
||
test_data = data.get_test() | ||
numb_test = 1 | ||
|
||
jdata["model"]["descriptor"].pop("type", None) | ||
jdata["model"]["type_embedding"] = {} | ||
jdata["model"]["type_embedding"]["neuron"] = [1] | ||
jdata["model"]["type_embedding"]["resnet_dt"] = False | ||
jdata["model"]["type_embedding"]["seed"] = 1 | ||
typeebd_param = jdata["model"]["type_embedding"] | ||
typeebd = TypeEmbedNet( | ||
neuron=typeebd_param["neuron"], | ||
activation_function=None, | ||
resnet_dt=typeebd_param["resnet_dt"], | ||
seed=typeebd_param["seed"], | ||
uniform_seed=True, | ||
padding=True, | ||
) | ||
descrpt = DescrptSeAEbdV2( | ||
**jdata["model"]["descriptor"], | ||
) | ||
jdata["model"]["fitting_net"]["descrpt"] = descrpt | ||
fitting = EnerFitting( | ||
**jdata["model"]["fitting_net"], | ||
) | ||
# fitting = EnerFitting(jdata['model']['fitting_net'], descrpt) | ||
model = EnerModel(descrpt, fitting, typeebd) | ||
|
||
# model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) | ||
input_data = { | ||
"coord": [test_data["coord"]], | ||
"box": [test_data["box"]], | ||
"type": [test_data["type"]], | ||
"natoms_vec": [test_data["natoms_vec"]], | ||
"default_mesh": [test_data["default_mesh"]], | ||
} | ||
model._compute_input_stat(input_data) | ||
model.descrpt.bias_atom_e = data.compute_energy_shift() | ||
|
||
t_prop_c = tf.placeholder(tf.float32, [5], name="t_prop_c") | ||
t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name="t_energy") | ||
t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name="t_force") | ||
t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name="t_virial") | ||
t_atom_ener = tf.placeholder( | ||
GLOBAL_TF_FLOAT_PRECISION, [None], name="t_atom_ener" | ||
) | ||
t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name="i_coord") | ||
t_type = tf.placeholder(tf.int32, [None], name="i_type") | ||
t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name="i_natoms") | ||
t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name="i_box") | ||
t_mesh = tf.placeholder(tf.int32, [None], name="i_mesh") | ||
is_training = tf.placeholder(tf.bool) | ||
t_fparam = None | ||
|
||
model_pred = model.build( | ||
t_coord, | ||
t_type, | ||
t_natoms, | ||
t_box, | ||
t_mesh, | ||
t_fparam, | ||
suffix="se_a_ebd_v2", | ||
reuse=False, | ||
) | ||
energy = model_pred["energy"] | ||
force = model_pred["force"] | ||
virial = model_pred["virial"] | ||
atom_ener = model_pred["atom_ener"] | ||
|
||
feed_dict_test = { | ||
t_prop_c: test_data["prop_c"], | ||
t_energy: test_data["energy"][:numb_test], | ||
t_force: np.reshape(test_data["force"][:numb_test, :], [-1]), | ||
t_virial: np.reshape(test_data["virial"][:numb_test, :], [-1]), | ||
t_atom_ener: np.reshape(test_data["atom_ener"][:numb_test, :], [-1]), | ||
t_coord: np.reshape(test_data["coord"][:numb_test, :], [-1]), | ||
t_box: test_data["box"][:numb_test, :], | ||
t_type: np.reshape(test_data["type"][:numb_test, :], [-1]), | ||
t_natoms: test_data["natoms_vec"], | ||
t_mesh: test_data["default_mesh"], | ||
is_training: False, | ||
} | ||
|
||
sess = self.cached_session().__enter__() | ||
sess.run(tf.global_variables_initializer()) | ||
[e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test) | ||
|
||
e = e.reshape([-1]) | ||
f = f.reshape([-1]) | ||
v = v.reshape([-1]) | ||
|
||
refe = [5.435394596262052014e-01 ] | ||
reff = [ | ||
6.583728125594628944e-02,7.228993116083935744e-02,1.971543579114074483e-03,6.567474563776359853e-02,7.809421727465599983e-02,-4.866958849094786890e-03,-8.670511901715304004e-02,3.525374157021862048e-02,1.415748959800727487e-03,6.375813001810648473e-02,-1.139053242798149790e-01,-4.178593754384440744e-03,-1.471737787218250215e-01,4.189712704724830872e-02,7.011731363309440038e-03,3.860874082716164030e-02,-1.136296927731473005e-01,-1.353471298745012206e-03 | ||
] | ||
refv = [ | ||
-4.243979601186427253e-01,1.097173849143971286e-01,1.227299373463585502e-02,1.097173849143970314e-01,-2.462891443164323124e-01,-5.711664180530139426e-03,1.227299373463585502e-02,-5.711664180530143763e-03,-6.217348853341628408e-04 | ||
] | ||
refe = np.reshape(refe, [-1]) | ||
reff = np.reshape(reff, [-1]) | ||
refv = np.reshape(refv, [-1]) | ||
|
||
places = 6 | ||
for ii in range(e.size): | ||
self.assertAlmostEqual(e[ii], refe[ii], places=places) | ||
for ii in range(f.size): | ||
self.assertAlmostEqual(f[ii], reff[ii], places=places) | ||
for ii in range(v.size): | ||
self.assertAlmostEqual(v[ii], refv[ii], places=places) |