-
Notifications
You must be signed in to change notification settings - Fork 520
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement hessian autodiff calculation (#3262)
restrictions: - cannot jit - only the `forward_common` interface has its hessian calculation. not for `forward_common_lower`. - may give nan when nall == nloc. specifically when nloc==1 also fix bug in pt: transform_output. The output shape will be wrong when the dimension of output variable is larger than 1. --------- Co-authored-by: Han Wang <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
977b430
commit 25bf37a
Showing
8 changed files
with
408 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
import copy | ||
import math | ||
from typing import ( | ||
Dict, | ||
List, | ||
Optional, | ||
Union, | ||
) | ||
|
||
import torch | ||
|
||
from deepmd.dpmodel import ( | ||
get_hessian_name, | ||
) | ||
|
||
|
||
def make_hessian_model(T_Model): | ||
"""Make a model that can compute Hessian. | ||
LIMITATION: this model is not jitable due to the restrictions of torch jit script. | ||
LIMITATION: only the hessian of `forward_common` is available. | ||
Parameters | ||
---------- | ||
T_Model | ||
The model. Should provide the `forward_common` and `fitting_output_def` methods | ||
Returns | ||
------- | ||
The model computes hessian. | ||
""" | ||
|
||
class CM(T_Model): | ||
def __init__( | ||
self, | ||
*args, | ||
**kwargs, | ||
): | ||
super().__init__( | ||
*args, | ||
**kwargs, | ||
) | ||
self.hess_fitting_def = copy.deepcopy(super().fitting_output_def()) | ||
|
||
def requires_hessian( | ||
self, | ||
keys: Union[str, List[str]], | ||
): | ||
"""Set which output variable(s) requires hessian.""" | ||
if isinstance(keys, str): | ||
keys = [keys] | ||
for kk in self.hess_fitting_def.keys(): | ||
if kk in keys: | ||
self.hess_fitting_def[kk].r_hessian = True | ||
|
||
def fitting_output_def(self): | ||
"""Get the fitting output def.""" | ||
return self.hess_fitting_def | ||
|
||
def forward_common( | ||
self, | ||
coord, | ||
atype, | ||
box: Optional[torch.Tensor] = None, | ||
fparam: Optional[torch.Tensor] = None, | ||
aparam: Optional[torch.Tensor] = None, | ||
do_atomic_virial: bool = False, | ||
) -> Dict[str, torch.Tensor]: | ||
"""Return model prediction. | ||
Parameters | ||
---------- | ||
coord | ||
The coordinates of the atoms. | ||
shape: nf x (nloc x 3) | ||
atype | ||
The type of atoms. shape: nf x nloc | ||
box | ||
The simulation box. shape: nf x 9 | ||
fparam | ||
frame parameter. nf x ndf | ||
aparam | ||
atomic parameter. nf x nloc x nda | ||
do_atomic_virial | ||
If calculate the atomic virial. | ||
Returns | ||
------- | ||
ret_dict | ||
The result dict of type Dict[str,torch.Tensor]. | ||
The keys are defined by the `ModelOutputDef`. | ||
""" | ||
ret = super().forward_common( | ||
coord, | ||
atype, | ||
box=box, | ||
fparam=fparam, | ||
aparam=aparam, | ||
do_atomic_virial=do_atomic_virial, | ||
) | ||
vdef = self.fitting_output_def() | ||
hess_yes = [vdef[kk].r_hessian for kk in vdef.keys()] | ||
if any(hess_yes): | ||
hess = self._cal_hessian_all( | ||
coord, | ||
atype, | ||
box=box, | ||
fparam=fparam, | ||
aparam=aparam, | ||
) | ||
ret.update(hess) | ||
return ret | ||
|
||
def _cal_hessian_all( | ||
self, | ||
coord: torch.Tensor, | ||
atype: torch.Tensor, | ||
box: Optional[torch.Tensor] = None, | ||
fparam: Optional[torch.Tensor] = None, | ||
aparam: Optional[torch.Tensor] = None, | ||
) -> Dict[str, torch.Tensor]: | ||
nf, nloc = atype.shape | ||
coord = coord.view([nf, (nloc * 3)]) | ||
box = box.view([nf, 9]) if box is not None else None | ||
fparam = fparam.view([nf, -1]) if fparam is not None else None | ||
aparam = aparam.view([nf, nloc, -1]) if aparam is not None else None | ||
fdef = self.fitting_output_def() | ||
# keys of values that require hessian | ||
hess_keys: List[str] = [] | ||
for kk in fdef.keys(): | ||
if fdef[kk].r_hessian: | ||
hess_keys.append(kk) | ||
# result dict init by empty lists | ||
res = {get_hessian_name(kk): [] for kk in hess_keys} | ||
# loop over variable | ||
for kk in hess_keys: | ||
vdef = fdef[kk] | ||
vshape = vdef.shape | ||
vsize = math.prod(vdef.shape) | ||
# loop over frames | ||
for ii in range(nf): | ||
icoord = coord[ii] | ||
iatype = atype[ii] | ||
ibox = box[ii] if box is not None else None | ||
ifparam = fparam[ii] if fparam is not None else None | ||
iaparam = aparam[ii] if aparam is not None else None | ||
# loop over all components | ||
for idx in range(vsize): | ||
hess = self._cal_hessian_one_component( | ||
idx, icoord, iatype, ibox, ifparam, iaparam | ||
) | ||
res[get_hessian_name(kk)].append(hess) | ||
res[get_hessian_name(kk)] = torch.stack(res[get_hessian_name(kk)]).view( | ||
(nf, *vshape, nloc * 3, nloc * 3) | ||
) | ||
return res | ||
|
||
def _cal_hessian_one_component( | ||
self, | ||
ci, | ||
coord, | ||
atype, | ||
box: Optional[torch.Tensor] = None, | ||
fparam: Optional[torch.Tensor] = None, | ||
aparam: Optional[torch.Tensor] = None, | ||
) -> torch.Tensor: | ||
# coord, # (nloc x 3) | ||
# atype, # nloc | ||
# box: Optional[torch.Tensor] = None, # 9 | ||
# fparam: Optional[torch.Tensor] = None, # nfp | ||
# aparam: Optional[torch.Tensor] = None, # (nloc x nap) | ||
wc = wrapper_class_forward_energy(self, ci, atype, box, fparam, aparam) | ||
|
||
hess = torch.autograd.functional.hessian( | ||
wc, | ||
coord, | ||
create_graph=False, | ||
) | ||
return hess | ||
|
||
class wrapper_class_forward_energy: | ||
def __init__( | ||
self, | ||
obj: CM, | ||
ci: int, | ||
atype: torch.Tensor, | ||
box: Optional[torch.Tensor], | ||
fparam: Optional[torch.Tensor], | ||
aparam: Optional[torch.Tensor], | ||
): | ||
self.atype, self.box, self.fparam, self.aparam = atype, box, fparam, aparam | ||
self.ci = ci | ||
self.obj = obj | ||
|
||
def __call__( | ||
self, | ||
xx, | ||
): | ||
ci = self.ci | ||
atype, box, fparam, aparam = self.atype, self.box, self.fparam, self.aparam | ||
res = super(CM, self.obj).forward_common( | ||
xx.unsqueeze(0), | ||
atype.unsqueeze(0), | ||
box.unsqueeze(0) if box is not None else None, | ||
fparam.unsqueeze(0) if fparam is not None else None, | ||
aparam.unsqueeze(0) if aparam is not None else None, | ||
do_atomic_virial=False, | ||
) | ||
er = res["energy_redu"][0].view([-1])[ci] | ||
return er | ||
|
||
return CM |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.