Skip to content

Commit

Permalink
[SPARK-26216][SQL][FOLLOWUP] use abstract class instead of trait for …
Browse files Browse the repository at this point in the history
…UserDefinedFunction

## What changes were proposed in this pull request?

A followup of apache#23178 , to keep binary compability by using abstract class.

## How was this patch tested?

Manual test. I created a simple app with Spark 2.4
```
object TryUDF {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder().appName("test").master("local[*]").getOrCreate()
    import spark.implicits._
    val f1 = udf((i: Int) => i + 1)
    println(f1.deterministic)
    spark.range(10).select(f1.asNonNullable().apply($"id")).show()
    spark.stop()
  }
}
```

When I run it with current master, it fails with
```
java.lang.IncompatibleClassChangeError: Found interface org.apache.spark.sql.expressions.UserDefinedFunction, but class was expected
```

When I run it with this PR, it works

Closes apache#23351 from cloud-fan/minor.

Authored-by: Wenchen Fan <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
  • Loading branch information
cloud-fan committed Dec 22, 2018
1 parent 8dd29fe commit bba506f
Show file tree
Hide file tree
Showing 3 changed files with 28 additions and 4 deletions.
2 changes: 0 additions & 2 deletions docs/sql-migration-guide-upgrade.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,6 @@ displayTitle: Spark SQL Upgrading Guide

- In Spark version 2.4 and earlier, the `SET` command works without any warnings even if the specified key is for `SparkConf` entries and it has no effect because the command does not update `SparkConf`, but the behavior might confuse users. Since 3.0, the command fails if a `SparkConf` key is used. You can disable such a check by setting `spark.sql.legacy.setCommandRejectsSparkCoreConfs` to `false`.

- Spark applications which are built with Spark version 2.4 and prior, and call methods of `UserDefinedFunction`, need to be re-compiled with Spark 3.0, as they are not binary compatible with Spark 3.0.

- Since Spark 3.0, CSV/JSON datasources use java.time API for parsing and generating CSV/JSON content. In Spark version 2.4 and earlier, java.text.SimpleDateFormat is used for the same purpuse with fallbacks to the parsing mechanisms of Spark 2.0 and 1.x. For example, `2018-12-08 10:39:21.123` with the pattern `yyyy-MM-dd'T'HH:mm:ss.SSS` cannot be parsed since Spark 3.0 because the timestamp does not match to the pattern but it can be parsed by earlier Spark versions due to a fallback to `Timestamp.valueOf`. To parse the same timestamp since Spark 3.0, the pattern should be `yyyy-MM-dd HH:mm:ss.SSS`. To switch back to the implementation used in Spark 2.4 and earlier, set `spark.sql.legacy.timeParser.enabled` to `true`.

- In Spark version 2.4 and earlier, CSV datasource converts a malformed CSV string to a row with all `null`s in the PERMISSIVE mode. Since Spark 3.0, the returned row can contain non-`null` fields if some of CSV column values were parsed and converted to desired types successfully.
Expand Down
28 changes: 27 additions & 1 deletion project/MimaExcludes.scala
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,33 @@ object MimaExcludes {

// [SPARK-26216][SQL] Do not use case class as public API (UserDefinedFunction)
ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.sql.expressions.UserDefinedFunction$"),
ProblemFilters.exclude[IncompatibleTemplateDefProblem]("org.apache.spark.sql.expressions.UserDefinedFunction")
ProblemFilters.exclude[AbstractClassProblem]("org.apache.spark.sql.expressions.UserDefinedFunction"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.inputTypes"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.nullableTypes_="),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.dataType"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.f"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.this"),
ProblemFilters.exclude[DirectAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.asNonNullable"),
ProblemFilters.exclude[ReversedAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.asNonNullable"),
ProblemFilters.exclude[DirectAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.nullable"),
ProblemFilters.exclude[ReversedAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.nullable"),
ProblemFilters.exclude[DirectAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.asNondeterministic"),
ProblemFilters.exclude[ReversedAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.asNondeterministic"),
ProblemFilters.exclude[DirectAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.deterministic"),
ProblemFilters.exclude[ReversedAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.deterministic"),
ProblemFilters.exclude[DirectAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.apply"),
ProblemFilters.exclude[ReversedAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.apply"),
ProblemFilters.exclude[DirectAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.withName"),
ProblemFilters.exclude[ReversedAbstractMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.withName"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.productElement"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.productArity"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.copy$default$2"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.canEqual"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.copy"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.copy$default$1"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.productIterator"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.productPrefix"),
ProblemFilters.exclude[DirectMissingMethodProblem]("org.apache.spark.sql.expressions.UserDefinedFunction.copy$default$3")
)

// Exclude rules for 2.4.x
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ import org.apache.spark.sql.types.DataType
* @since 1.3.0
*/
@Stable
sealed trait UserDefinedFunction {
sealed abstract class UserDefinedFunction {

/**
* Returns true when the UDF can return a nullable value.
Expand Down

0 comments on commit bba506f

Please sign in to comment.