-
Notifications
You must be signed in to change notification settings - Fork 51
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding scripts for computing 'influence' in mailing list and folding …
…in influence data
- Loading branch information
Showing
2 changed files
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
from bigbang.analysis.influence import * | ||
from bigbang.analysis.utils import localize_to_utc | ||
|
||
affil_start_date_col_name = 'Time start (mm/yyyy)' | ||
affil_end_date_col_name = 'Time end (mm/yyyy)' | ||
affil_affiliation_col_name = 'Affiliation' | ||
|
||
def affiliated_influence(arx, affiliations, top_n = 50): | ||
## this is defined in influence.py, and builds a sender_cat column | ||
## based on email domain | ||
augment(arx) | ||
|
||
## this further looks up the email author in the affiliations table | ||
## and modifies the sender_cat column | ||
arx.data['sender_cat'] = arx.data.apply( | ||
lambda mrow: lookup_affiliation(mrow['sender_cat'], mrow['Date'], affiliations), | ||
axis=1) | ||
|
||
top_ddd = aggregate_activity(arx, top_n) | ||
|
||
return top_ddd | ||
|
||
def lookup_affiliation(name, date, affiliation_data): | ||
""" | ||
Find the affiliation of a name on a particular date, | ||
given an affiliation data file. | ||
""" | ||
name_affils = affiliation_data[affiliation_data['Name'] == name] | ||
|
||
date = localize_to_utc(date) | ||
|
||
for na_row in name_affils.iterrows(): | ||
if date > na_row[1][affil_start_date_col_name] \ | ||
and date < na_row[1][affil_end_date_col_name]: | ||
return na_row[1][affil_affiliation_col_name] | ||
|
||
return name |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
from bigbang.archive import Archive, open_list_archives | ||
|
||
import bigbang.parse as parse | ||
import bigbang.analysis.utils as utils | ||
|
||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
|
||
import os | ||
import subprocess | ||
|
||
from bigbang.datasets import domains, organizations | ||
|
||
""" | ||
Processing of mailing list data to support an analysis | ||
of actor-influence, where actors are understood to be at | ||
the affilation/organization level. | ||
""" | ||
|
||
dd = domains.load_data() | ||
odf = organizations.load_data() | ||
|
||
good_categories = ["company", "academic", "sdo"] # not "generic" | ||
|
||
def lookup_stakeholder_by_domain(domain): | ||
""" | ||
For an email domain, use the organization data provided in BigBang | ||
to look up the organization name associate with that email domain. | ||
""" | ||
search = odf['email domain names'].apply(lambda dn: domain in str(dn)) | ||
|
||
orgs = odf[search] | ||
|
||
top_orgs = orgs[orgs['subsidiary of / alias of'].isna()] | ||
|
||
if top_orgs.shape[0] > 0: | ||
return top_orgs['name'].iloc[0] | ||
else: | ||
return domain | ||
|
||
def normalize_senders_by_domain(row): | ||
try: | ||
if dd.loc[row['domain']]['category'] in good_categories: | ||
return lookup_stakeholder_by_domain(row['domain']) | ||
else: | ||
return parse.clean_from(row['From']) | ||
except Exception as e: | ||
return parse.clean_from(row['From']) | ||
|
||
def is_affiliation(domain): | ||
try: | ||
if dd.loc[domain]['category'] in good_categories: | ||
return lookup_stakeholder_by_domain(domain) | ||
else: | ||
return "Unaffiliated" | ||
except: | ||
return "Unaffiliated" | ||
|
||
def augment(arx): | ||
""" | ||
Add to an email archive's data three new columns: an email addres, | ||
an email domain, and the 'category' of the sender, which may be an | ||
organization name, 'Unaffiliated', or a cleaned version of the email's | ||
From field. | ||
""" | ||
arx.data['email'] = arx.data['From'].apply(utils.extract_email) | ||
arx.data['domain'] = arx.data['From'].apply(utils.extract_domain) | ||
arx.data['sender_cat'] = arx.data.apply(normalize_senders_by_domain, axis=1) | ||
|
||
def aggregate_activity(aarx, top_n): | ||
""" | ||
Transform an 'augmented' email archive into a 'wide' format datafame | ||
that has the activity of each actor (organizational level, where possible) | ||
for each year. | ||
TODO: generalize this, with more flexible frequency. | ||
TODO: Internalize the 'augment' preprocessing. | ||
""" | ||
grouped = aarx.data.groupby(['sender_cat', pd.Grouper(key='Date', freq='Y')]) \ | ||
.count().reset_index().sort_values('Date') | ||
|
||
ddd = grouped.pivot(columns="sender_cat", index="Date", values="From").fillna(0) | ||
|
||
top_ddd = ddd[ddd.sum().sort_values(ascending=False)[:top_n].index] | ||
|
||
return top_ddd | ||
|
||
def influence_from_arx(arx, top_n): | ||
""" | ||
Return a dataframe with the annual influence of each organizational | ||
actor, for the top TOP_N most active stakeholders. | ||
""" | ||
top_n = 50 | ||
augment(arx) | ||
aaarx = aggregate_activity(arx, top_n) | ||
|
||
return aaarx |