The advent of AlphaFold and other protein AI models has transformed protein design, necessitating efficient handling of large-scale data and complex workflows. Traditional programming packages, developed before these AI advancements, often lead to inefficiencies in coding and slow execution. To bridge this gap, we introduce Afpdb, a high-performance Python module built on AlphaFold’s NumPy architecture. Afpdb leverages RFDiffusion's contig syntax to streamline residue and atom selection, making coding simpler and more readable. By integrating PyMOL’s visualization capabilities, Afpdb enables automatic visual quality control, enhancing productivity in structural biology. With over 180 methods commonly used in protein AI design, Afpdb supports the development of concise, high-performance code, addressing the limitations of existing tools like Biopython. Afpdb is designed to complement powerful AI models such as AlphaFold and ProteinMPNN, providing the additional utility needed to effectively manipulate protein structures and drive innovation in protein design.
Please read our short artical published in Bioinformatics.
The tutorial book is availabe in PDF.
The best way to learn and practice Afpdb is to open Tutorial Notebook in Google Colab.
Table of Content
- Demo
- Fundamental Concepts
- Internal Data Structure
- Contig
- Selection
- Atom Selection
- Residue Selection
- Residue List
- Read/Write
- Sequence & Chain
- Geometry, Measurement, & Visualization
- Select Neighboring Residues
- Display
- B-factors
- PyMOL Interface
- RMSD
- Solvent-Accessible Surface Area (SASA)
- Secondary Structures - DSSP
- Internal Coordinates
- Object Manipulation
- Move Objects
- Align
- Split & Merge Objects
- Parsers for AI Models
Interested in applying Afpdb to AI protein design? Open AI Use Case Notebook in Google Colab.
Table of Content
- Example AI Protein Design Use Cases
- Handle Missing Residues in AlphaFold Prediction
- Structure Prediction with ESMFold
- Create Side Chains for de novo Designed Proteins
- Compute Binding Scores in EvoPro
Open Developer Notebook in Google Colab.
Stable version:
pip install afpdb
or
conda install bioconda::afpdb
Development version:
pip install git+https://github.com/data2code/afpdb.git
or
git clone https://github.com/data2code/afpdb.git
cd afpdb
pip install .
To import the package use:
from afpdb.afpdb import Protein,RS,RL,ATS
# load the ab-ag complex structure 5CIL from PDB
p=Protein("5cil")
# show key statistics summary of the structure
p.summary().display()
Output
Chain Sequence Length #Missing Residues #Insertion Code First Residue Name Last Residue Name
-- ------- ---------------------------------------------------------------------------------------------------------------------
0 H VQLVQSGAEVKRPGSSVTVS... 220 20 14 2 227
1 L EIVLTQSPGTQSLSPGERAT... 212 0 1 1 211
2 P NWFDITNWLWYIK 13 0 0 671 683
print("Old P chain residue numbering:", p.rs("P").name(), "\n")
Output:
Old P chain residue numbering: ['671', '672', '673', '674', '675', '676', '677', '678', '679', '680', '681', '682', '683']
p.renumber("RESTART", inplace=True)
print("New P chain residue numbering:", p.rs("P").name(), "\n")
Output:
New P chain residue numbering: ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13']
p.summary()
Output
Chain Sequence Length #Missing Residues #Insertion Code First Residue Name Last Residue Name
-- ------- ---------------------------------------------------------------------------------------------------------------------
0 H VQLVQSGAEVKRPGSSVTVS... 220 20 14 1 226
1 L EIVLTQSPGTQSLSPGERAT... 212 0 1 1 211
2 P NWFDITNWLWYIK 13 0 0 1 13
print("Sequence for AlphaFold modeling, with missing residues replaced by Glycine:")
print(">5cil\n"+p.seq(gap="G")+"\n")
Output
Sequence for AlphaFold modeling, with missing residues replaced by Glycine:
>5cil
VQLVQSGAEVKRPGSSVTVSCKASGGSFSTYALSWVRQAPGRGLEWMGGVIPLLTITNYAPRFQGRITITADRSTSTAYLELNSLRPEDTAVYYCAREGTTGDGDLGKPIGAFAHWGQGTLVTVSSASTKGPSVFPLAPSGGGGGGGGGTAALGCLVKDYFPEPVTVGSWGGGGNSGALTSGGVHTFPAVLQSGSGLYSLSSVVTVPSSSLGTGGQGTYICNVNHKPSNTKVDKKGGVEP:EIVLTQSPGTQSLSPGERATLSCRASQSVGNNKLAWYQQRPGQAPRLLIYGASSRPSGVADRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGQSLSTFGQGTKVEVKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR:NWFDITNWLWYIK
# identify H,L chain residues within 4A to antigen P chain
rs_binder, rs_seed, df_dist=p.rs_around("P", dist=4)
# show the distance of binder residues to antigen P chain
df_dist[:5].display()
Output
chain_a resn_a resn_i_a resi_a res_a chain_b resn_b resn_i_b resi_b res_b dist atom_a atom_b
--- --------- -------- ---------- -------- ------- --------- -------- ---------- -------- ------- ------- -------- --------
408 P 6 6 437 T H 94 94 97 E 2.63625 OG1 OE2
640 P 4 4 435 D L 32 32 252 K 2.81482 OD1 NZ
807 P 2 2 433 W L 94 94 314 S 2.91194 N OG
767 P 1 1 432 N L 91 91 311 Y 2.9295 ND2 O
526 P 7 7 438 N H 99E 99 107 K 3.03857 ND2 CE
# create a new PDB file only containing the antigen and binder residues
p=p.extract(rs_binder | "P")
# save the new structure into a local PDB file
p.save("binders.pdb")
# display the PDB struture, default is show ribbon and color by chains.
p.show(show_sidechains=True)
Output (It will be 3D interactive within Jupyter Notebook)
# convert the selection into a PyMOL selection command
rs = (rs_binder | P).str(format="PYMOL", rs_name="myint")
cmd=f'''fetch 5cil, myobj; util.cbc;
{rs}
show sticks, myint; zoom myint; deselect;
save binders.pse
# generate a PyMOL session file binders.pse
Protein.PyMOL().run(cmd)