Russian GPT trained with 2048 context length (ruGPT3Large), Russian GPT Medium trained with context 2048 (ruGPT3Medium), Russian GPT Small trained with context 2048 (ruGPT3Small) and Russian GPT2 large (ruGPT2Large) trained with 1024 context length.
We suggest you use ruGPT2Large because this model is more stable and tested.
Examples here
Note: If you cannot download the checkpoint, try adding it to your google drive following this issue
Table of contents
- Setup ruGPT3Large
- Setup ruGPT3Medium
- Setup ruGPT3Small
- Setup ruGPT2Large
- Details of pretraining ruGPT3Large
- Details of pretraining ruGPT3Medium
- Details of pretraining ruGPT3Small
- Details of pretraining ruGPT2Large
- Usage ruGPT3Large
- Usage ruGPT3Medium
- Usage ruGPT3Small
- Usage ruGPT2Large
The organizers gave participants the opportunity to get access to Cristofari by SberCloud. To get access, please send to [email protected] your request with brief information about your project. We will review your request and get back to you. Please note that the number of such accesses is limited - 100 accounts available. If necessary, please leave your request as early as possible.
Code reused from microsoft implementation of Megatron-LM. Supports only python3.6.
To use this repo please install the latest supported versions of PyTorch with GPU support.
Additionally, part of this codebase leverages tensorflow-cpu to (optionally) perform dataloading of TFRecords for GPT training. We recommend creating a virtual environment (to avoid breaking existing tf installations) and install our requirements.txt
.
python -m pip install virtualenv
virtualenv gpt_env
source gpt_env/bin/activate
pip install -r requirements.txt
For using of sparse operations in attention additionally install torch-blocksparse:
source gpt_env/bin/activate
pip install torch-blocksparse
Torch-Blocksparse depends on CUDA 10.1 and the Triton language and compiler, which requires llvm-9.
For this model you can use code from microsoft implementation of Megatron-LM in our repo or use transformers interface. Therefore, you should follow the instructions for ruGPT2Large or ruGPT3Large for installation.
For this model you can use code from microsoft implementation of Megatron-LM in our repo or use transformers interface. Therefore, you should follow the instructions for ruGPT2Large or ruGPT3Large for installation.
This model is smaller and was trained with transformers==v2.8.0. For installing use command:
pip install transformers
All GPUs are Tesla V100-SXM3 32 Gb.
Model was trained on 1024 context length with transformers by SberDevices team on 80B tokens around 3 epochs. After that we finetune this on 2048 context. For load transformers checkpoint use --load-openai
.
The training process took around two weeks on 8 DGX2 (128 GPUs) for 1024 context and few days on 16 GPUs for 2048 context on Christophari.
Perplexity is 16 on test set.
You can obtain this model here GDrive Yandex.Disk GDrive option-2 or use in transformers with model name sberbank-ai/rugpt3large_based_on_gpt2
(see usage for details).
🤗HuggingFace model card link
Model was trained on 1024 context length with transformers by SberDevices team on 80B tokens around 3 epoch. After that model was finetuned on 2048 context.
Total training time took around 16 days on 64 GPUs.
You can obtain this model here GDrive Yandex.Disk GDrive option-2 or use in transformers with model name sberbank-ai/rugpt3medium_based_on_gpt2
(see usage for details).
🤗HuggingFace model card link
Model was trained on 1024 context length with transformers by SberDevices team on 80B tokens around 3 epoch. After that model was finetuned on 2048 context.
Total training time took around one week on 32 GPUs.
You can obtain this model here GDrive or use in transformers with model name sberbank-ai/rugpt3small_based_on_gpt2
(see usage for details).
🤗HuggingFace model card link
Model was trained on 1024 context length with transformers by SberDevices team on 170Gb data on 64 GPUs 3 weeks.
You can obtain this model here GDrive Yandex.Disk GDrive option-2 or use in transformers with model name sberbank-ai/rugpt2large
(see usage for details).
🤗HuggingFace model card link
We've provided 2 scripts that pretrain and generate with ruGPT3Large. Save and load model checkpoints with --save
and --load
.
We support three file formats for training, but all require preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
{"src": "KISH", "text": "Как же джокер ты хитер", "type": "Ru", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "Ты удачи приговор", "type": "Ru", "id": "42", "title": "Second Part"}
The name of the text field of the json can be changed by using the --text-key
flag. The other metadata are optional and are not used in training.
bash ./scripts/pretrain_ruGPT3Large.sh
This script runs single gpu ruGPT3Large pretraining. This script contains command for running on Christophari:
MP_SIZE=1
NUM_GPUS_PER_WORKER=1
mpirun --np ${NUM_GPUS_PER_WORKER} python pretrain_megatron.py \
--train-data /home/jovyan/data/train.jsonl \
--valid-data /home/jovyan/data/valid.jsonl \
--test-data /home/jovyan/data/valid.jsonl \
--save /home/jovyan/ruGPT3Large/checkpoints_${now}_${host} \
--load /home/jovyan/ruGPT3Large \
--tensorboard-dir /home/jovyan/ruGPT3Large/runs_${now}_${host} \
--save-interval 500 \
--eval-interval 500 \
--log-interval 100 \
--model-parallel-size ${MP_SIZE} \
--num-layers 24 \
--hidden-size 1536 \
--num-attention-heads 16 \
--seq-length 2048 \
--max-position-embeddings 2048 \
--vocab-size 50257 \
--batch-size 1 \
--train-iters 200000 \
--distributed-backend nccl \
--lr 0.00015 \
--lr-decay-style cosine \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--warmup .01 \
--fp16 \
--lazy-loader \
--checkpoint-activations \
--loose-json \
--text-key \
--tokenizer-path /home/jovyan/ruGPT3Large \
--tokenizer-type GPT2BPETokenizer \
--finetune \
Or you can use use transformers interface:
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/rugpt3large_based_on_gpt2")
model = AutoModel.from_pretrained("sberbank-ai/rugpt3large_based_on_gpt2")
bash ./scripts/generate_ruGPT3Large.sh
Starts an interactive terminal session that generates text either conditionally or unconditionally depending on what the user enters into the prompt.
The script is capable of top-k, or top-p sampling as specified by the appropriate variables within the script.
Example of generation:
Context: на словах ты лев толстой
ruGPT3Large: а в сущности, - ты тоже не дурак, просто так же, как и твой человек, то есть твоя "жизнь", а также как и ты думаешь по-настоящему "ты" и есть твои "жизнь" или "выбор" в отношении твоего положения.
Context: как же джокер ты хитер
ruGPT3Large: или автор книги по бизнесу!
Example of generation in colab
You can run megatron script with option --load-openai
or use transformers interface:
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/rugpt3medium_based_on_gpt2")
model = AutoModel.from_pretrained("sberbank-ai/rugpt3medium_based_on_gpt2")
bash ./scripts/generate_ruGPT3Medium.sh
Starts an interactive terminal session that generates text either conditionally or unconditionally depending on what the user enters into the prompt.
The script is capable of top-k, or top-p sampling as specified by the appropriate variables within the script.
Example of generation:
Context >>> На словах ты Лев Толстой, а на деле
ruGPT: На словах ты Лев Толстой, а на деле я — Лев Давидович Троцкий, — сказал я. — Так что мы еще посмотрим
Context: как же джокер ты хитер
ruGPT: как же джокер ты хитер, в этой игре
- Я не злодей, просто хотел узнать, можно ли узнать о чём?
You can run megatron script with option --load-openai
or use transformers interface:
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/rugpt3small_based_on_gpt2")
model = AutoModelWithLMHead.from_pretrained("sberbank-ai/rugpt3small_based_on_gpt2")
bash ./scripts/generate_ruGPT3Small.sh
Starts an interactive terminal session that generates text either conditionally or unconditionally depending on what the user enters into the prompt.
The script is capable of top-k, or top-p sampling as specified by the appropriate variables within the script.
Example of generation:
Context >>> На словах ты Лев Толстой, а на деле
ruGPT: На словах ты Лев Толстой, а на деле – Толстой, – с улыбкой заметил Николай, – я вижу, что ты прав.
– А вот это – другое дело, – сказал Лев Толстой, – это дело другое.
– Да, да, – согласился Николай, – я прав.
– А вот что, Лев Николаевич, – сказал Лев Толстой, – я думаю, что в этом отношении у меня нет оснований сомневаться в твоей правоте.
Example of finetune on essays and generation in colab
We've provided 2 scripts that pretrain and generate with ruGPT2Large from transformers original code.
We can pass to model raw text files.
bash ./scripts/pretrain_ruGPT2Large.sh
This script runs single gpu ruGPT3Large pretraining. This script contains command for running on Christophari:
python pretrain_transformers.py \
--output_dir=/home/jovyan/rugpt2large/checkpoints_"${now}"_"${host}" \
--model_type=gpt2 \
--model_name_or_path=/home/jovyan/gpt2_large_bbpe_v50 \
--do_train \
--train_data_file=/home/jovyan/data/train.txt \
--do_eval \
--eval_data_file=/home/jovyan/data/valid.txt \
--fp16
Or use transformers interface:
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/rugpt2large")
model = AutoModel.from_pretrained("sberbank-ai/rugpt2large")
bash ./scripts/generate_ruGPT2Large.sh
Starts an interactive terminal session that generates text either conditionally or unconditionally depending on what the user enters into the prompt.
The script is capable of top-k, or top-p sampling as specified by the appropriate variables within the script.
Example of generation:
Context: На словах ты Лев Толстой, а на деле
ruGPT: На словах ты Лев Толстой, а на деле – козел!» – так я про себя подумал, но решил не отвечать. Я встал, поклонился