Skip to content

Commit

Permalink
🚀 refactor: Langchain v0.3 (#74)
Browse files Browse the repository at this point in the history
* ↪️refactor: moved packages out of langchain community and fixed embeddings abstraction

* ↪️refactor: update requirements.txt

* ✓chore: removed long list of requirements.txt

* fix: mongo db query and  embed/upload

* refactor: change env var name

* docs: Atlas MongoDB update env var setting

* docs: MongoDB Atlas direction

* docs: update atlas mongoDB directions

* docs: add deprecated env variable

* refactor: mongo db env variable MONGO_VECTOR_COLLECTION backwards compatability add
  • Loading branch information
FinnConnor authored Sep 27, 2024
1 parent 9c65628 commit edd8a0c
Show file tree
Hide file tree
Showing 5 changed files with 55 additions and 30 deletions.
7 changes: 5 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,8 @@ The following environment variables are required to run the application:
- Note: `AZURE_OPENAI_ENDPOINT` will work but `RAG_AZURE_OPENAI_ENDPOINT` will override it in order to not conflict with LibreChat setting.
- `HF_TOKEN`: (Optional) if needed for `huggingface` option.
- `OLLAMA_BASE_URL`: (Optional) defaults to `http://ollama:11434`.
- `ATLAS_SEARCH_INDEX`: (Optional) the name of the vector search index if using Atlas MongoDB, defaults to `vector_index`
- `MONGO_VECTOR_COLLECTION`: Deprecated for MongoDB, please use `ATLAS_SEARCH_INDEX` and `COLLECTION_NAME`

Make sure to set these environment variables before running the application. You can set them in a `.env` file or as system environment variables.

Expand All @@ -87,10 +89,11 @@ Instead of using the default pgvector, we could use [Atlas MongoDB](https://www.
```env
VECTOR_DB_TYPE=atlas-mongo
ATLAS_MONGO_DB_URI=<mongodb+srv://...>
MONGO_VECTOR_COLLECTION=<collection name>
COLLECTION_NAME=<vector collection>
ATLAS_SEARCH_INDEX=<vector search index>
```

The `ATLAS_MONGO_DB_URI` could be the same or different from what is used by LibreChat. Even if it is the same, the `$MONGO_VECTOR_COLLECTION` collection needs to be a completely new one, separate from all collections used by LibreChat. In additional, create a vector search index for `$MONGO_VECTOR_COLLECTION` with the following json:
The `ATLAS_MONGO_DB_URI` could be the same or different from what is used by LibreChat. Even if it is the same, the `$COLLECTION_NAME` collection needs to be a completely new one, separate from all collections used by LibreChat. In addition, create a vector search index for collection above (remember to assign `$ATLAS_SEARCH_INDEX`) with the following json:

```json
{
Expand Down
24 changes: 13 additions & 11 deletions config.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,8 @@
from enum import Enum
from datetime import datetime
from dotenv import find_dotenv, load_dotenv
from langchain_community.embeddings import (
HuggingFaceEmbeddings,
HuggingFaceHubEmbeddings,
OllamaEmbeddings,
)
from langchain_ollama import OllamaEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpointEmbeddings
from langchain_openai import AzureOpenAIEmbeddings, OpenAIEmbeddings
from starlette.middleware.base import BaseHTTPMiddleware
from store_factory import get_vector_store
Expand Down Expand Up @@ -60,10 +57,10 @@ def get_env_variable(
ATLAS_MONGO_DB_URI = get_env_variable(
"ATLAS_MONGO_DB_URI", "mongodb://127.0.0.1:27018/LibreChat"
)
ATLAS_SEARCH_INDEX = get_env_variable("ATLAS_SEARCH_INDEX", "vector_index")
MONGO_VECTOR_COLLECTION = get_env_variable(
"MONGO_VECTOR_COLLECTION", "vector_collection"
)

"MONGO_VECTOR_COLLECTION", None
) # Deprecated, backwards compatability
CHUNK_SIZE = int(get_env_variable("CHUNK_SIZE", "1500"))
CHUNK_OVERLAP = int(get_env_variable("CHUNK_OVERLAP", "100"))

Expand Down Expand Up @@ -195,7 +192,7 @@ def init_embeddings(provider, model):
model_name=model, encode_kwargs={"normalize_embeddings": True}
)
elif provider == EmbeddingsProvider.HUGGINGFACETEI:
return HuggingFaceHubEmbeddings(model=model)
return HuggingFaceEndpointEmbeddings(model=model)
elif provider == EmbeddingsProvider.OLLAMA:
return OllamaEmbeddings(model=model, base_url=OLLAMA_BASE_URL)
else:
Expand Down Expand Up @@ -236,12 +233,17 @@ def init_embeddings(provider, model):
mode="async",
)
elif VECTOR_DB_TYPE == VectorDBType.ATLAS_MONGO:
logger.warning("Using Atlas MongoDB as vector store is not fully supported yet.")
# Backward compatability check
if MONGO_VECTOR_COLLECTION:
logger.info(f"DEPRECATED: Please remove env var MONGO_VECTOR_COLLECTION and instead use COLLECTION_NAME and ATLAS_SEARCH_INDEX. You can set both as same, but not neccessary. See README for more information.")
ATLAS_SEARCH_INDEX = MONGO_VECTOR_COLLECTION
COLLECTION_NAME = MONGO_VECTOR_COLLECTION
vector_store = get_vector_store(
connection_string=ATLAS_MONGO_DB_URI,
embeddings=embeddings,
collection_name=MONGO_VECTOR_COLLECTION,
collection_name=COLLECTION_NAME,
mode="atlas-mongo",
search_index=ATLAS_SEARCH_INDEX,
)
else:
raise ValueError(f"Unsupported vector store type: {VECTOR_DB_TYPE}")
Expand Down
19 changes: 11 additions & 8 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,15 +1,15 @@
langchain==0.1.12
langchain_community==0.0.34
langchain_openai==0.0.8
langchain_core==0.1.45
langchain==0.3
langchain_community==0.3
langchain_openai==0.2.0
langchain_core==0.3.5
sqlalchemy==2.0.28
python-dotenv==1.0.1
fastapi==0.110.0
psycopg2-binary==2.9.9
pgvector==0.2.5
uvicorn==0.28.0
pypdf==4.1.0
unstructured==0.12.6
unstructured==0.15.13
markdown==3.6
networkx==3.2.1
pandas==2.2.1
Expand All @@ -19,12 +19,15 @@ pypandoc==1.13
PyJWT==2.8.0
asyncpg==0.29.0
python-multipart==0.0.9
sentence_transformers==2.5.1
sentence_transformers==3.1.1
aiofiles==23.2.1
rapidocr-onnxruntime==1.3.17
rapidocr-onnxruntime==1.3.24
opencv-python-headless==4.9.0.80
pymongo==4.6.3
langchain-mongodb==0.1.3
langchain-mongodb==0.2.0
langchain-ollama==0.2.0
langchain-openai==0.2.0
langchain-huggingface==0.1.0
cryptography==42.0.7
python-magic==0.4.27
python-pptx==0.6.23
Expand Down
8 changes: 8 additions & 0 deletions store.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,14 @@ class AtlasMongoVector(MongoDBAtlasVectorSearch):
@property
def embedding_function(self) -> Embeddings:
return self.embeddings

def add_documents(self, docs: list[Document], ids: list[str]):
#{file_id}_{idx}
new_ids = [id for id in range(len(ids))]
file_id = docs[0].metadata['file_id']
f_ids = [f'{file_id}_{id}' for id in new_ids]
return super().add_documents(docs, f_ids)


def similarity_search_with_score_by_vector(
self,
Expand Down
27 changes: 18 additions & 9 deletions store_factory.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,16 @@
from langchain_community.embeddings import OpenAIEmbeddings

from typing import Optional
from langchain_core.embeddings import Embeddings
from store import AsyncPgVector, ExtendedPgVector
from store import AtlasMongoVector
from pymongo import MongoClient


def get_vector_store(
connection_string: str,
embeddings: OpenAIEmbeddings,
embeddings: Embeddings,
collection_name: str,
mode: str = "sync",
search_index: Optional[str] = None
):
if mode == "sync":
return ExtendedPgVector(
Expand All @@ -25,7 +27,9 @@ def get_vector_store(
elif mode == "atlas-mongo":
mongo_db = MongoClient(connection_string).get_database()
mong_collection = mongo_db[collection_name]
return AtlasMongoVector(collection=mong_collection, embedding=embeddings, index_name=collection_name)
return AtlasMongoVector(
collection=mong_collection, embedding=embeddings, index_name=search_index
)

else:
raise ValueError("Invalid mode specified. Choose 'sync' or 'async'.")
Expand All @@ -35,20 +39,25 @@ async def create_index_if_not_exists(conn, table_name: str, column_name: str):
# Construct index name conventionally
index_name = f"idx_{table_name}_{column_name}"
# Check if index exists
exists = await conn.fetchval(f"""
exists = await conn.fetchval(
f"""
SELECT EXISTS (
SELECT FROM pg_class c
JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE c.relname = $1
AND n.nspname = 'public' -- Or specify your schema if different
);
""", index_name)
""",
index_name,
)
# Create the index if it does not exist
if not exists:
await conn.execute(f"""
await conn.execute(
f"""
CREATE INDEX CONCURRENTLY IF NOT EXISTS {index_name}
ON public.{table_name} ({column_name});
""")
"""
)
print(f"Index {index_name} created on {table_name}.{column_name}")
else:
print(f"Index {index_name} already exists on {table_name}.{column_name}")
print(f"Index {index_name} already exists on {table_name}.{column_name}")

0 comments on commit edd8a0c

Please sign in to comment.