This repository makes possible the usage of the TensorFlow C++ library from the outside of the TensorFlow source code folders and without the use of the Bazel build system.
This repository contains two CMake projects. The tensorflow_cc project downloads, builds and installs the TensorFlow C++ library into the operating system and the example project demonstrates its simple usage.
If you wish to start using this project right away, fetch a prebuilt image on Docker Hub!
Running the image on CPU:
docker run -it floopcz/tensorflow_cc:ubuntu-shared /bin/bash
If you also want to utilize your NVIDIA GPU, install NVIDIA Docker and run:
docker run --runtime=nvidia -it floopcz/tensorflow_cc:ubuntu-shared-cuda /bin/bash
The list of available images:
Image name | Description |
---|---|
floopcz/tensorflow_cc:ubuntu-static |
Ubuntu + static build of tensorflow_cc |
floopcz/tensorflow_cc:ubuntu-shared |
Ubuntu + shared build of tensorflow_cc |
floopcz/tensorflow_cc:ubuntu-shared-cuda |
Ubuntu + shared build of tensorflow_cc + NVIDIA CUDA |
floopcz/tensorflow_cc:archlinux-shared |
Arch Linux + shared build of tensorflow_cc |
floopcz/tensorflow_cc:archlinux-shared-cuda |
Arch Linux + shared build of tensorflow_cc + NVIDIA CUDA |
# On Ubuntu 16.04, add ubuntu-toolchain-r PPA (for g++-6)
# sudo apt-get install software-properties-common
# sudo add-apt-repository ppa:ubuntu-toolchain-r/test
# sudo apt-get update
sudo apt-get install build-essential curl git cmake unzip autoconf autogen libtool mlocate zlib1g-dev \
g++-6 python python3-numpy python3-dev python3-pip python3-wheel wget
sudo updatedb
If you require GPU support on Ubuntu, please also install Bazel, NVIDIA CUDA Toolkit, NVIDIA drivers, cuDNN, and cuda-command-line-tools
package. The tensorflow build script will automatically detect CUDA if it is installed in /opt/cuda
or /usr/local/cuda
directories.
sudo pacman -S base-devel cmake git unzip mlocate python python-numpy wget
sudo updatedb
For GPU support on Arch, also install the following:
sudo pacman -S gcc6 bazel cuda cudnn nvidia
git clone https://github.com/FloopCZ/tensorflow_cc.git
cd tensorflow_cc
There are two possible ways to build the TensorFlow C++ library:
- As a static library (default):
- Faster to build.
- Provides only basic functionality, just enough for inferring using an existing network (see contrib/makefile).
- No GPU support.
- As a shared library:
- Requires Bazel.
- Slower to build.
- Provides the full TensorFlow C++ API.
- GPU support.
cd tensorflow_cc
mkdir build && cd build
# for static library only:
cmake ..
# for shared library only (requires Bazel):
# cmake -DTENSORFLOW_STATIC=OFF -DTENSORFLOW_SHARED=ON ..
make && sudo make install
# cleanup bazel build directory
rm -rf ~/.cache
# remove the build folder
cd .. && rm -rf build
// example.cpp
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream>
using namespace std;
using namespace tensorflow;
int main()
{
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
cout << status.ToString() << "\n";
return 1;
}
cout << "Session successfully created.\n";
}
# CMakeLists.txt
find_package(TensorflowCC REQUIRED)
# Altenatively, if only shared library was built
# find_package(TensorflowCC REQUIRED COMPONENTS Shared)
add_executable(example example.cpp)
# Link the static Tensorflow library.
target_link_libraries(example TensorflowCC::Static)
# Altenatively, link the shared Tensorflow library.
# target_link_libraries(example TensorflowCC::Shared)
# For shared library setting, you may also link cuda if it is available.
# find_package(CUDA)
# if(CUDA_FOUND)
# target_link_libraries(example ${CUDA_LIBRARIES})
# endif()
mkdir build && cd build
cmake .. && make
./example
If you are still unsure, consult the Dockerfiles for Ubuntu and Arch Linux.