The notebooks
folder contains a jupyter notebook that downloads all calcium-dependent fluorescence traces used in the paper and generates the data panels of figures 3 to 5.
The notebook contains code that sets up a suitable environment in Google Colab (click here: ). In case there is a warning about conflicting cupy versions, it can be ignored.
A Colab Pro pro instance with a A100 GPU is needed to compute the pairwise correlations in Figure 3. A free Colab GPU instance is sufficient to perform the analysis of the remaining figures 4 and 5.
Using mamba (or conda) as package manager:
mamba create -n hoffmannetal -c rapidsai -c conda-forge -c nvidia rapids=23.10 python=3.10 cudatoolkit=11.8
mamba activate hoffmannetal
git clone https://github.com/danionella/hoffmann_et_al_2023.git
pip install --ignore-installed --quiet ./hoffmann_et_al_2023
wget "https://gin.g-node.org/danionella/Hoffmann_et_al_2023/raw/5a3146dc108208415f87bf17ebce37d566b28208/20230611_export_3.h5" -O data.h5
A faster but non permanent data repository:
wget "https://owncloud-ext.charite.de/owncloud/index.php/s/H97Qi8haRYLZu4e/download" -O data.h5
Tested on:
Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz
Ubuntu 20.04.6 LTS
125 GB RAM
NVIDIA GeForce RTX 3090 24GB
Hardware requirements: For Figure 3: GPU with memory >= 24 GB For Figure 4 and 5: GPU with memory >= 16 GB