Skip to content

dana89co/povmap

 
 

Repository files navigation

povmap: Extension to the package emdi

R-CMD-check

Overview

The R package povmap is designed to facilitate the production of small area estimates of means and poverty headcount rates. It adds several new features to the emdi package. These include new options for:

  • incorporating survey weights,
  • ex-post benchmarking of estimates,
  • two additional outcome variable transformations,
  • and several new convenience functions to assist with reporting results.

Installation

## To install the package from CRAN, run the following in R: 

install.packages("povmap")

Development Version

## To get a bug fix or to use a feature from the development version, you can install 
## the development version of povmap from GitHub. Sometimes, povmap maybe unavailable in CRAN (although this is typically ## unlikely)

devtools::install_github("SSA-Statistical-Team-Projects/povmap")
## alternatively,
remotes::install_github("SSA-Statistical-Team-Projects/povmap")

Usage

library(povmap)

### estimate a unit level model with sample and population weights
ebp_model <- ebp(fixed = eqIncome ~ gender + eqsize + cash +
                 self_empl + unempl_ben + age_ben + surv_ben + sick_ben +
                 dis_ben + rent + fam_allow + house_allow + cap_inv +
                 tax_adj,
                 pop_data = eusilcA_pop, 
                 pop_domains = "district",
                 smp_data = eusilcA_smp, 
                 smp_domains = "district",
                 na.rm = TRUE, 
                 weights = "weight",
                 pop_weights = "hhsize", 
                 MSE = TRUE, 
                 weights_type = "nlme",
                 B = 2, 
                 L = 2)

summary(ebp_model)
#> Empirical Best Prediction
#> 
#> Call:
#>  ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben + 
#>     age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow + 
#>     house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop, 
#>     pop_domains = "district", smp_data = eusilcA_smp, smp_domains = "district", 
#>     L = 2, MSE = TRUE, B = 2, na.rm = TRUE, weights = "weight", 
#>     pop_weights = "hhsize", weights_type = "nlme")
#> 
#> Out-of-sample domains:  24 
#> In-sample domains:  70 
#> 
#> Sample sizes:
#> Units in sample:  1945 
#> Units in population:  25000 
#>                    Min. 1st Qu. Median      Mean 3rd Qu. Max.
#> Sample_domains       14    17.0   22.5  27.78571   29.00  200
#> Population_domains    5   126.5  181.5 265.95745  265.75 5857
#> 
#> Explanatory measures for the mixed model:
#>  Marginal_R2 Conditional_R2
#>     0.673562      0.7251496
#> 
#> Residual diagnostics for the mixed model:
#>                Skewness Kurtosis Shapiro_W    Shapiro_p
#> Error         0.6572179 9.757903 0.9521260 9.944428e-25
#> Random_effect 0.4185469 2.852405 0.9801002 3.295740e-01
#> 
#> ICC:  0.1580318 
#> 
#> Transformation:
#>  Transformation Method Optimal_lambda Shift_parameter
#>         box.cox   reml      0.6046901               0

### showcasing the actual poverty map
load_shapeaustria()  ## reading in the shapefile

## the new `map_plot` now requires sf shapefile objects
## rather than the older `sp` (it's dependencies are being phased out)
map_plot(object = ebp_model, 
         MSE = FALSE, 
         CV = FALSE, 
         map_obj = shape_austria_dis, 
         indicator = c("Head_Count"), 
         map_dom_id = "PB")

###### ---------------------------------------------------- #######
# compute direct estimates 
direct_est <- direct(y = "eqIncome", 
                     smp_data = eusilcA_smp,
                     smp_domains = "district", 
                     weights = "weight",
                     var = TRUE, 
                     B = 2)

### some general pre-estimation statistics
ebp_reportdescriptives(model = ebp_model, 
                       direct = direct_est,
                       smp_data = eusilcA_smp, 
                       weights = "weight",
                       pop_weights = "hhsize", 
                       CV_level = "state",
                       pop_data = eusilcA_pop, 
                       pop_domains = "district")
#> $cv_table
#>                    indicator       ebp_cv  direct_cv
#> 1 CV for Area: Lower Austria 0.0005623766 0.03030733
#> 2    CV for Area: Vorarlberg 0.0096720887 0.16370318
#> 3 CV for Area: Upper Austria 0.3875383775 7.39427881
#> 4        CV for Area: Styria 0.0053397075 0.31487144
#> 5      CV for Area: Salzburg 0.0768486572 0.45859197
#> 6         CV for Area: Tyrol 0.0192320593 0.68041843
#> 7     CV for Area: Carinthia 0.0154801556 0.25072764
#> 8    CV for Area: Burgenland 0.0209849881 0.87719916
#> 9        CV for Area: Vienna 0.0269278962 0.17973145
#> 
#> $basicinfo_df
#>                indicator census survey
#> 1        Number of Units  25000   1945
#> 2      Number of Regions      9      9
#> 3 Number of Target Areas     94     70
#> 
#> $poverty_df
#>               indicator        model        survey
#> 1 National Poverty Rate     0.141604     0.1528866
#> 2 National Poverty Line 10924.320000 10924.3200000


### compare the means between survey and census prior to model estimation
variables <- c("gender", "eqsize", "cash", "self_empl",
               "unempl_ben", "age_ben", "surv_ben",
               "sick_ben", "dis_ben", "rent", "fam_allow",
               "house_allow", "cap_inv", "tax_adj")

ebp_test_means(varlist = variables,
               pop_data = eusilcA_pop,
               smp_data = eusilcA_smp,
               weights = "weight")
#>       variable    smp_means    pop_means          diff    pvalue
#> 1      age_ben  5478.609860  5304.056507 -1.745534e+02 0.9898989
#> 2      cap_inv   487.265886   456.851454 -3.041443e+01 0.9944134
#> 3         cash 12712.233319 12706.449297 -5.784022e+00 0.9997571
#> 4      dis_ben   523.440415   542.325741  1.888533e+01 0.9965279
#> 5       eqsize     1.610035     1.603376 -6.659056e-03 0.9937560
#> 6    fam_allow  1617.487932  1624.957604  7.469672e+00 0.9987536
#> 7       gender     1.371915     1.390840  1.892518e-02 0.9780223
#> 8  house_allow    61.819822    65.413716  3.593893e+00 0.9947154
#> 9         rent   608.004341   770.357579  1.623532e+02 0.9856212
#> 10   self_empl  2039.125009  1966.965080 -7.215993e+01 0.9949896
#> 11    sick_ben    61.836570    67.450918  5.614348e+00 0.9957620
#> 12    surv_ben    61.917778    88.952360  2.703458e+01 0.9838119
#> 13     tax_adj   -76.558371   -82.539963 -5.981592e+00 0.9978321
#> 14  unempl_ben   463.508414   429.382134 -3.412628e+01 0.9903023

### report EBP model coefficients with significance levels
ebp_reportcoef_table(ebp_model, 4)
#>        Variable       coeff std_error
#> 1   (Intercept) 406.4743***   10.6335
#> 2  genderfemale      7.8761    5.0849
#> 3        eqsize      -32***    4.8715
#> 4          cash   0.0125***   0.00025
#> 5     self_empl   0.0104***   0.00031
#> 6    unempl_ben   0.0087***    0.0012
#> 7       age_ben   0.0129***   0.00031
#> 8      surv_ben   0.0128***    0.0026
#> 9      sick_ben   0.0110***    0.0033
#> 10      dis_ben   0.0137***    0.0008
#> 11         rent   0.0083***    0.0004
#> 12    fam_allow    -0.00006    0.0009
#> 13  house_allow    0.0156**    0.0064
#> 14      cap_inv   0.0088***    0.0007
#> 15      tax_adj  -0.0054***    0.0014


### compute the CVs (several CV types are estimated including
### Horowitz Thompson CVs, CVs accounting for the design effect,
### bootstraped CVs i.e. calibrated or naive)
head(ebp_compute_cv(model = ebp_model, calibvar = "gender"))
#>               Domain Direct_Head_Count EBP_Head_Count HT_Head_Count_CV
#> 1          Amstetten         0.2727273    0.272976680        0.3157348
#> 2              Baden         0.0250000    0.041176471        0.9484184
#> 3            Bludenz         0.4705882    0.392251816        0.3344887
#> 4     Braunau am Inn         0.3793103    0.383753501        0.2855876
#> 5            Bregenz         0.0000000    0.006823821              NaN
#> 6 Bruck-Mürzzuschlag         0.0000000    0.020138889              NaN
#>   CB_Head_Count_CV DesignEffect_CV EBP_Head_Count_CV
#> 1        0.1963673       0.2027130        0.05618261
#> 2        1.9158379       1.8528466        0.50857165
#> 3        0.1512468       0.1524379        0.37168619
#> 4        0.1700101       0.1747679        0.11225965
#> 5              NaN             NaN        3.58601508
#> 6              NaN             NaN        2.56021421

### report the model fit and normality assumptions
ebp_normalityfit(model = ebp_model)
#>          indicator     value
#> 1     rsq_marginal 0.6735620
#> 2  rsq_conditional 0.7251496
#> 3 epsilon_skewness 0.6572179
#> 4 epsilon_kurtosis 9.7579034
#> 5  random_skewness 0.4185469
#> 6  random_kurtosis 2.8524049

Getting help

If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub

About

povmap: an extension to the emdi package

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 98.3%
  • Stata 1.7%