Skip to content
/ TDNN Public

Time delay neural network (TDNN) implementation in Pytorch using unfold method

Notifications You must be signed in to change notification settings

cvqluu/TDNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 

Repository files navigation

TDNN

Simple Time Delay Neural Network (TDNN) implementation in Pytorch. Uses the unfold method to slide over an input sequence.

Alt text [1] https://www.danielpovey.com/files/2015_interspeech_multisplice.pdf

Factorized TDNN (TDNN-F)

I've also implemented the Factorized TDNN from Kaldi (TDNN-F) in PyTorch here: https://github.com/cvqluu/Factorized-TDNN

Usage

To recreate the TDNN part of the x-vector network in [2]:

from tdnn import TDNN

# Assuming 24 dim MFCCs per frame

frame1 = TDNN(input_dim=24, output_dim=512, context_size=5, dilation=1)
frame2 = TDNN(input_dim=512, output_dim=512, context_size=3, dilation=2)
frame3 = TDNN(input_dim=512, output_dim=512, context_size=3, dilation=3)
frame4 = TDNN(input_dim=512, output_dim=512, context_size=1, dilation=1)
frame5 = TDNN(input_dim=512, output_dim=1500, context_size=1, dilation=1)

# Input to frame1 is of shape (batch_size, T, 24)
# Output of frame5 will be (batch_size, T-14, 1500)

Alt text [2] https://www.danielpovey.com/files/2018_icassp_xvectors.pdf

Releases

No releases published

Packages

No packages published

Languages