Implementation of unsupervised clustering algorithms from scratch in different machine learning frameworks. The goal is to demonstrate the similarities and differences of the frameworks. If you have an idea to improve an implementation (e.g., a more elegant or faster solution) or would like to implement a different algorithm/framework, please feel free to contribute.
Clustering algorithms
- K-Means
- Mean shift
Machine learning frameworks
Algorithm | Framework | |
---|---|---|
K-Means | NumPy | kmeans_np.py |
PyTorch | kmeans_pt.py | |
TensorFlow 2 (Eager) | kmeans_tf_eager.py | |
TensorFlow 2 (Graph) | kmeans_tf.py | |
JAX | kmeans_jax.py | |
Mean shift | NumPy | meanshift_np.py |
PyTorch | meanshift_pt.py | |
JAX | meanshift_jax.py | |
TensorFlow 2 (Eager) | meanshift_tf_eager.py | |
TensorFlow 2 (Graph) | meanshift_tf.py |
Please follow the installation guide.
You can simply run the following command to execute a mean shift clustering
on aggregation
with JAX
python main.py
To select different algorithms, datasets, or frameworks, r
The algorithm, dataset, and framework can be selected via command like options, set
algorithm
tokmeans
ormeanshift
dataset
toaggregation
,jain
,moons
,s4
, ormeanshift
framework
tonumpy
,pytorch
,jax
,tensorflow_eager
, ortensorflow
For example
python main.py algorithm=kmeans dataset=moons framework=pytorch
For all options, please see configs/base.yaml
.
For timing, set time=true
python main.py time=true
Plot result
python main.py plot=true
Plot gif
python main.py plot_gif=true
Clone repository
git clone [email protected]:creinders/ClusteringAlgorithmsFromScratch.git
cd ClusteringAlgorithmsFromScratch
Install anaconda environment and dependencies
conda create -n clustering python=3.9
conda activate clustering
# Install PyTorch (follow https://pytorch.org/get-started)
conda install pytorch -c pytorch
# Install TensorFlow (follow https://www.tensorflow.org/install/pip)
pip install tensorflow
# Install JAX (follow https://github.com/google/jax#installation)
pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install -r requirements.txt
If you want to use the datasets aggregation
, jain
, or s4
, please download the data
./download_datasets.sh