- caffe-ssd: https://github.com/weiliu89/caffe.git
- commit: 9d6e8151eedf3e8d3abaecde47b788a1ec2d2156
- create soft link of some bin files(caffe, convert_annoset, get_image_size) with caffe-ssd project
- export PYTHONPATH=$SSD_CAFFE_ROOT/python:$PYTHONPATH
- write labelmap_voc.prototxt files
- run with the continuously num files
- 1_createXml.py: create xml formats from origin labels or use labelImg tools to get the xml format labels
- 2_createTrainVal.py: generate the test and trainval image name lists in ImageSets/Main, generate trainval test file lists and get test image size
- [3_create_list.sh]: optional, 2_createTrainVal.py, generate the test, trainval image lists and get test image size
- 4_create_data.sh: get label map and generate LMDB datas
- 5_ssd_run.py: run ssd training and get the solver.prototxt and train_net
- 6_ssd_run_direct.sh: training the net directly based on the train_net have generated
- testLabelImgs/JPEGImages: the jpeg images
- testLabelImgs/labels: the labels for each image
- testLabelImgs/Annotations: the labels with .xml format
- testLabelImgs/ImageSets/Main: the test and trainval txt files
- the original labels is created by BBox-Label-Tool, the format is:
object_num
className x1min y1min x1max y1max
className x2min y2min x2max y2max
- models:
- examples:
- job:
- results:
- data/test.txt
- data/trainval.txt
- data/test_name_size.txt