-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
aa962f6
commit e24a8a3
Showing
1 changed file
with
148 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
""" | ||
Produce an optimal partition by solving an integer linear program (ILP). | ||
Programmer: Erel Segal-Halevi, Eitan Lichtman | ||
Since: 2022-02 | ||
Credit: Rob Pratt, https://or.stackexchange.com/a/6115/2576 | ||
""" | ||
|
||
from typing import List, Callable, Any | ||
from numbers import Number | ||
|
||
from prtpy import objectives as obj, outputtypes as out, Binner, printbins | ||
from math import inf | ||
import mip | ||
|
||
def optimal( | ||
binner: Binner, numbins: int, items: List[any], relative_values: List[any] = None, | ||
copies=1, | ||
time_limit=inf, | ||
verbose=0, | ||
solver_name = mip.GRB, # passed to MIP. See https://docs.python-mip.com/en/latest/quickstart.html#creating-models | ||
): | ||
""" | ||
Produce a partition that minimizes the sum of the positive differences from the avg, by solving an integer linear program (ILP). | ||
:param numbins: number of bins. | ||
:param items: list of items. | ||
:param valueof: a function that maps an item from the list `items` to a number representing its value. | ||
:param copies: how many copies there are of each item. Default: 1. | ||
:param time_limit: stop the computation after this number of seconds have passed. | ||
>>> from prtpy import BinnerKeepingContents, BinnerKeepingSums | ||
>>> optimal(BinnerKeepingSums(), 2, [11.1,11,11,11,22],[0.1,0.9]) | ||
array([11. , 55.1]) | ||
>>> optimal(BinnerKeepingSums(), 2, [11.1,11,11,11,22],[0.9,0.1]) | ||
array([55.1, 11. ]) | ||
>>> optimal(BinnerKeepingSums(), 2, [11,11,11,11,22]) | ||
array([33., 33.]) | ||
>>> optimal(BinnerKeepingSums(), 5, [2,2,5,5,5,5,9]) | ||
array([5., 5., 7., 7., 9.]) | ||
>>> optimal(BinnerKeepingSums(), 3, [1,1,1,1]) | ||
array([1., 1., 2.]) | ||
>>> optimal(BinnerKeepingSums(), 3, [1,1,1,1,1]) | ||
array([1., 2., 2.]) | ||
The following examples are based on: | ||
Walter (2013), 'Comparing the minimum completion times of two longest-first scheduling-heuristics'. | ||
>>> walter_numbers = [46, 39, 27, 26, 16, 13, 10] | ||
>>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers)) | ||
Bin #0: [39, 16], sum=55.0 | ||
Bin #1: [46, 13], sum=59.0 | ||
Bin #2: [27, 26, 10], sum=63.0 | ||
>>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers, [0.2, 0.5, 0.3])) | ||
Bin #0: [26, 10], sum=36.0 | ||
Bin #1: [46, 27, 16], sum=89.0 | ||
Bin #2: [39, 13], sum=52.0 | ||
>>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers, [0.9, 0, 0.1])) | ||
Bin #0: [46, 39, 27, 26, 13, 10], sum=161.0 | ||
Bin #1: [], sum=0.0 | ||
Bin #2: [16], sum=16.0 | ||
>>> optimal(BinnerKeepingSums(), 3, walter_numbers) | ||
array([55., 59., 63.]) | ||
>>> from prtpy import partition | ||
>>> partition(algorithm=optimal, numbins=3, items=[1, 2, 3], copies=[2, 1, 4]) | ||
[[2, 3], [1, 1, 3], [3, 3]] | ||
""" | ||
ibins = range(numbins) | ||
items = list(items) | ||
iitems = range(len(items)) | ||
if isinstance(copies, Number): | ||
copies = {iitem: copies for iitem in iitems} | ||
model = mip.Model(name = '', solver_name=solver_name) | ||
counts: dict = { | ||
iitem: [model.add_var(var_type=mip.INTEGER) for ibin in ibins] | ||
for iitem in iitems | ||
} # counts[i][j] is a variable that represents how many times item i appears in bin j. | ||
|
||
bin_sums = [ | ||
sum([counts[iitem][ibin] * binner.valueof(items[iitem]) for iitem in iitems]) | ||
for ibin in ibins | ||
] | ||
|
||
sum_items = 0 | ||
if not copies: | ||
sum_items = sum(items) | ||
else: | ||
for i in range (len(items)): | ||
sum_items = sum_items + items[i] * copies[i] | ||
|
||
if relative_values: | ||
z_js = [ | ||
bin_sums[ibin] - sum_items * relative_values[ibin] | ||
for ibin in ibins | ||
] | ||
else: | ||
z_js = [ | ||
bin_sums[ibin] - sum_items / len(ibins) | ||
for ibin in ibins | ||
] | ||
|
||
t_js = [ | ||
model.add_var(var_type=mip.INTEGER) for ibin in ibins | ||
] | ||
|
||
|
||
model.objective = mip.minimize( | ||
0.5 * sum(t_js) | ||
) | ||
|
||
# Construct the list of constraints: | ||
t_js_greater_than_z_js = [t_js[ibin] >= z_js[ibin] for ibin in ibins] | ||
t_js_greater_than_minus_z_js = [t_js[ibin] >= -z_js[ibin] for ibin in ibins] | ||
counts_are_non_negative = [counts[iitem][ibin] >= 0 for ibin in ibins for iitem in iitems] | ||
each_item_in_one_bin = [ | ||
sum([counts[iitem][ibin] for ibin in ibins]) == copies[iitem] for iitem in iitems | ||
] | ||
constraints = each_item_in_one_bin + t_js_greater_than_z_js + t_js_greater_than_minus_z_js + counts_are_non_negative | ||
for constraint in constraints: model += constraint | ||
|
||
# Solve the ILP: | ||
model.lp_method = verbose | ||
status = model.optimize(max_seconds=time_limit) | ||
if status != mip.OptimizationStatus.OPTIMAL: | ||
raise ValueError(f"Problem status is not optimal - it is {status}.") | ||
|
||
# Construct the output: | ||
output = binner.new_bins(numbins) | ||
for ibin in ibins: | ||
for iitem in iitems: | ||
count_item_in_bin = int(counts[iitem][ibin].x) | ||
for _ in range(count_item_in_bin): | ||
binner.add_item_to_bin(output, items[iitem], ibin) | ||
if not relative_values: | ||
binner.sort_by_ascending_sum(output) | ||
return output | ||
|
||
|
||
if __name__ == "__main__": | ||
import doctest, logging | ||
(failures, tests) = doctest.testmod(report=True, optionflags=doctest.FAIL_FAST) | ||
print("{} failures, {} tests".format(failures, tests)) |