Skip to content

Commit

Permalink
Add integer_programming_avg.py
Browse files Browse the repository at this point in the history
  • Loading branch information
8onlichtman authored Mar 31, 2024
1 parent aa962f6 commit e24a8a3
Showing 1 changed file with 148 additions and 0 deletions.
148 changes: 148 additions & 0 deletions prtpy/partitioning/integer_programming_avg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
"""
Produce an optimal partition by solving an integer linear program (ILP).
Programmer: Erel Segal-Halevi, Eitan Lichtman
Since: 2022-02
Credit: Rob Pratt, https://or.stackexchange.com/a/6115/2576
"""

from typing import List, Callable, Any
from numbers import Number

from prtpy import objectives as obj, outputtypes as out, Binner, printbins
from math import inf
import mip

def optimal(
binner: Binner, numbins: int, items: List[any], relative_values: List[any] = None,
copies=1,
time_limit=inf,
verbose=0,
solver_name = mip.GRB, # passed to MIP. See https://docs.python-mip.com/en/latest/quickstart.html#creating-models
):
"""
Produce a partition that minimizes the sum of the positive differences from the avg, by solving an integer linear program (ILP).
:param numbins: number of bins.
:param items: list of items.
:param valueof: a function that maps an item from the list `items` to a number representing its value.
:param copies: how many copies there are of each item. Default: 1.
:param time_limit: stop the computation after this number of seconds have passed.
>>> from prtpy import BinnerKeepingContents, BinnerKeepingSums
>>> optimal(BinnerKeepingSums(), 2, [11.1,11,11,11,22],[0.1,0.9])
array([11. , 55.1])
>>> optimal(BinnerKeepingSums(), 2, [11.1,11,11,11,22],[0.9,0.1])
array([55.1, 11. ])
>>> optimal(BinnerKeepingSums(), 2, [11,11,11,11,22])
array([33., 33.])
>>> optimal(BinnerKeepingSums(), 5, [2,2,5,5,5,5,9])
array([5., 5., 7., 7., 9.])
>>> optimal(BinnerKeepingSums(), 3, [1,1,1,1])
array([1., 1., 2.])
>>> optimal(BinnerKeepingSums(), 3, [1,1,1,1,1])
array([1., 2., 2.])
The following examples are based on:
Walter (2013), 'Comparing the minimum completion times of two longest-first scheduling-heuristics'.
>>> walter_numbers = [46, 39, 27, 26, 16, 13, 10]
>>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers))
Bin #0: [39, 16], sum=55.0
Bin #1: [46, 13], sum=59.0
Bin #2: [27, 26, 10], sum=63.0
>>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers, [0.2, 0.5, 0.3]))
Bin #0: [26, 10], sum=36.0
Bin #1: [46, 27, 16], sum=89.0
Bin #2: [39, 13], sum=52.0
>>> printbins(optimal(BinnerKeepingContents(), 3, walter_numbers, [0.9, 0, 0.1]))
Bin #0: [46, 39, 27, 26, 13, 10], sum=161.0
Bin #1: [], sum=0.0
Bin #2: [16], sum=16.0
>>> optimal(BinnerKeepingSums(), 3, walter_numbers)
array([55., 59., 63.])
>>> from prtpy import partition
>>> partition(algorithm=optimal, numbins=3, items=[1, 2, 3], copies=[2, 1, 4])
[[2, 3], [1, 1, 3], [3, 3]]
"""
ibins = range(numbins)
items = list(items)
iitems = range(len(items))
if isinstance(copies, Number):
copies = {iitem: copies for iitem in iitems}
model = mip.Model(name = '', solver_name=solver_name)
counts: dict = {
iitem: [model.add_var(var_type=mip.INTEGER) for ibin in ibins]
for iitem in iitems
} # counts[i][j] is a variable that represents how many times item i appears in bin j.

bin_sums = [
sum([counts[iitem][ibin] * binner.valueof(items[iitem]) for iitem in iitems])
for ibin in ibins
]

sum_items = 0
if not copies:
sum_items = sum(items)
else:
for i in range (len(items)):
sum_items = sum_items + items[i] * copies[i]

if relative_values:
z_js = [
bin_sums[ibin] - sum_items * relative_values[ibin]
for ibin in ibins
]
else:
z_js = [
bin_sums[ibin] - sum_items / len(ibins)
for ibin in ibins
]

t_js = [
model.add_var(var_type=mip.INTEGER) for ibin in ibins
]


model.objective = mip.minimize(
0.5 * sum(t_js)
)

# Construct the list of constraints:
t_js_greater_than_z_js = [t_js[ibin] >= z_js[ibin] for ibin in ibins]
t_js_greater_than_minus_z_js = [t_js[ibin] >= -z_js[ibin] for ibin in ibins]
counts_are_non_negative = [counts[iitem][ibin] >= 0 for ibin in ibins for iitem in iitems]
each_item_in_one_bin = [
sum([counts[iitem][ibin] for ibin in ibins]) == copies[iitem] for iitem in iitems
]
constraints = each_item_in_one_bin + t_js_greater_than_z_js + t_js_greater_than_minus_z_js + counts_are_non_negative
for constraint in constraints: model += constraint

# Solve the ILP:
model.lp_method = verbose
status = model.optimize(max_seconds=time_limit)
if status != mip.OptimizationStatus.OPTIMAL:
raise ValueError(f"Problem status is not optimal - it is {status}.")

# Construct the output:
output = binner.new_bins(numbins)
for ibin in ibins:
for iitem in iitems:
count_item_in_bin = int(counts[iitem][ibin].x)
for _ in range(count_item_in_bin):
binner.add_item_to_bin(output, items[iitem], ibin)
if not relative_values:
binner.sort_by_ascending_sum(output)
return output


if __name__ == "__main__":
import doctest, logging
(failures, tests) = doctest.testmod(report=True, optionflags=doctest.FAIL_FAST)
print("{} failures, {} tests".format(failures, tests))

0 comments on commit e24a8a3

Please sign in to comment.