-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b0f55c6
commit b6a1376
Showing
1 changed file
with
185 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "75688ac6-879d-4449-b73e-74f03a5f991f", | ||
"metadata": { | ||
"tags": [], | ||
"user_expressions": [] | ||
}, | ||
"source": [ | ||
"<img src=\"https://xarray.dev/dataset-diagram-logo.png\"\n", | ||
" align=\"right\"\n", | ||
" width=\"30%\"/>\n", | ||
"\n", | ||
"# Geospatial Dataset Rechunking\n", | ||
"\n", | ||
"This is a national water model: https://registry.opendata.aws/nwm-archive/" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "5dd71599-465f-4c97-baaa-19d900d2a070", | ||
"metadata": { | ||
"user_expressions": [] | ||
}, | ||
"source": [ | ||
"## Set up cluster" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "24beda07-03c8-4a23-8600-80dbe10298ce", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import dask\n", | ||
"\n", | ||
"dask.config.set({\n", | ||
" \"array.rechunk.method\": \"p2p\",\n", | ||
" \"optimization.fuse.active\": False,\n", | ||
" \"distributed.comm.retry.count\": 20,\n", | ||
" \"distributed.comm.timeouts.connect\": 120,\n", | ||
"});" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "60b08a1c-d042-40f2-aaaa-e7665ca85d64", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import coiled\n", | ||
"\n", | ||
"cluster = coiled.Cluster(\n", | ||
" n_workers=100,\n", | ||
" region=\"us-east-1\",\n", | ||
")\n", | ||
"client = cluster.get_client()\n", | ||
"client" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "8185966d-6659-482b-bcbb-826b8f30b1e3", | ||
"metadata": {}, | ||
"source": [ | ||
"## Load NWM data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e8b1749a-0d64-4278-823c-892120bf1a5b", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import xarray as xr\n", | ||
"\n", | ||
"ds = xr.open_zarr(\n", | ||
" \"s3://noaa-nwm-retrospective-2-1-zarr-pds/rtout.zarr\",\n", | ||
" consolidated=True,\n", | ||
").drop_encoding()\n", | ||
"ds" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2147fc5c-60ee-4409-8c22-69c5e68a4c63", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"ds.nbytes / 1e12 # half-petabyte" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "0911fb96-7c08-4ca6-a35a-22e2a5a908cd", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"## Time-optimized rechunking\n", | ||
"\n", | ||
"Let's look at two months worth of data (~1 TB) and rechunk it to be optimized for time dimension selections." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2a6fb91d-6a02-4afc-8d8a-ec3529f805f4", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"data = ds.zwattablrt.sel(time=slice(\"2020-01-01\", \"2020-03-01\")) # 1 TB of data\n", | ||
"data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8057c72c-7212-49fa-ad18-7aa346beb8cc", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"result = data.chunk({\"time\": 1, \"x\": \"auto\", \"y\": \"auto\"})\n", | ||
"result" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "68c7e99e-dec7-4201-9344-2738e5f8bca3", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"result.to_zarr(\"s3://oss-scratch-space/nwm-time-optimized.zarr\", mode=\"w\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "57e3a741-ad69-4f54-9094-78586a59d29e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import fsspec\n", | ||
"\n", | ||
"fs = fsspec.filesystem(\"s3\")\n", | ||
"fs.ls(\"s3://oss-scratch-space/nwm-time-optimized.zarr/\")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.9" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |