Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⚡️ Speed up function float_to_255 by 21% #50

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Jan 24, 2025

📄 21% (0.21x) speedup for float_to_255 in pydantic/color.py

⏱️ Runtime : 11.7 microseconds 9.74 microseconds (best of 239 runs)

📝 Explanation and details

Given these considerations, this function is already optimized for speed. Here's the function with minimal but necessary changes.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 52 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from pydantic.color import float_to_255

# unit tests

def test_valid_inputs():
    # Test exact boundaries
    codeflash_output = float_to_255(0.0)
    codeflash_output = float_to_255(1.0)
    # Test middle values
    codeflash_output = float_to_255(0.5)
    codeflash_output = float_to_255(0.25)
    codeflash_output = float_to_255(0.75)
    # Test values close to boundaries
    codeflash_output = float_to_255(0.0001)
    codeflash_output = float_to_255(0.9999)


def test_non_float_inputs():
    # Test integer inputs
    codeflash_output = float_to_255(0)
    codeflash_output = float_to_255(1)
    # Test string inputs
    with pytest.raises(TypeError):
        float_to_255("0.5")
    with pytest.raises(TypeError):
        float_to_255("1")
    # Test None input
    with pytest.raises(TypeError):
        float_to_255(None)


def test_boundary_conditions():
    # Test floating-point precision limits
    codeflash_output = float_to_255(1.0 - 1e-10)
    codeflash_output = float_to_255(0.0 + 1e-10)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from pydantic.color import float_to_255

# unit tests

def test_basic_cases():
    # Test exact bounds
    codeflash_output = float_to_255(0.0)
    codeflash_output = float_to_255(1.0)
    
    # Test mid-range values
    codeflash_output = float_to_255(0.5)
    codeflash_output = float_to_255(0.25)
    codeflash_output = float_to_255(0.75)

    # Test small increments
    codeflash_output = float_to_255(0.1)
    codeflash_output = float_to_255(0.9)

    # Test rounding cases
    codeflash_output = float_to_255(0.498)
    codeflash_output = float_to_255(0.502)



def test_deterministic_behavior():
    # Test consistent rounding
    codeflash_output = float_to_255(0.333333)

def test_boundary_precision():
    # Test precision cases
    codeflash_output = float_to_255(1/255)
    codeflash_output = float_to_255(254/255)


def test_zero_and_one_edge_cases():
    # Test exact zero and one
    codeflash_output = float_to_255(0.0)
    codeflash_output = float_to_255(1.0)

def test_minimal_incremental_changes():
    # Test small incremental changes
    codeflash_output = float_to_255(0.00000001)
    codeflash_output = float_to_255(0.99999999)

def test_subnormal_floating_point_numbers():
    # Test very small positive subnormal numbers
    codeflash_output = float_to_255(5e-324)

    # Test very small negative subnormal numbers
    with pytest.raises(ValueError):
        float_to_255(-5e-324)

def test_floating_point_arithmetic_anomalies():
    # Test values resulting from floating-point arithmetic
    codeflash_output = float_to_255(0.1 + 0.2 - 0.3)
    codeflash_output = float_to_255(0.3 - 0.1 - 0.2)

def test_extreme_values_near_limits():
    # Test values just below 1
    codeflash_output = float_to_255(0.9999999999999999)

    # Test values just above 0
    codeflash_output = float_to_255(0.0000000000000001)

def test_floating_point_representations_of_integers():
    # Test exact representation of integers
    codeflash_output = float_to_255(0.5)
    codeflash_output = float_to_255(0.25)
    codeflash_output = float_to_255(0.75)

def test_negative_zero():
    # Test negative zero representation
    codeflash_output = float_to_255(-0.0)

def test_unusual_floating_point_values():
    # Test denormalized numbers
    codeflash_output = float_to_255(1e-308)
    codeflash_output = float_to_255(1e-40)



from pydantic.color import float_to_255

def test_float_to_255():
    assert float_to_255(0.0) == 0

📢 Feedback on this optimization? Discord

Given these considerations, this function is already optimized for speed. Here's the function with minimal but necessary changes.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jan 24, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 January 24, 2025 08:38
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI relnotes-fix
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants