Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⚡️ Speed up function sorter by 30,125% #95

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

codeflash-ai-dev[bot]
Copy link

📄 30,125% (301.25x) speedup for sorter in cli/code_to_optimize/bubble_sort.py

⏱️ Runtime : 9.03 seconds 29.9 milliseconds (best of 32 runs)

📝 Explanation and details
The given code is implementing the bubble sort algorithm, which is not optimal for sorting. We can significantly increase the speed of this function by switching to a more efficient sorting algorithm like Timsort, which is the default sorting algorithm used in Python. Here's the optimized version.

This utilizes Python's built-in sort method, which is highly efficient with a time complexity of O(n log n).

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 39 Passed
🌀 Generated Regression Tests 38 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage No coverage data found for sorter
⚙️ Existing Unit Tests Details
- test_bubble_sort.py
- test_bubble_sort__perfinstrumented.py
- test_bubble_sort_conditional.py
- test_bubble_sort_conditional__perfinstrumented.py
- test_bubble_sort_import.py
- test_bubble_sort_import__perfinstrumented.py
- test_bubble_sort_in_class.py
- test_bubble_sort_in_class__perfinstrumented.py
- test_bubble_sort_parametrized.py
- test_bubble_sort_parametrized__perfinstrumented.py
- test_bubble_sort_parametrized_loop.py
- test_bubble_sort_parametrized_loop__perfinstrumented.py
- test_sorter__unit_test_0.py
- test_sorter__unit_test_1.py
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_already_sorted_list():
    # Test with a list that is already sorted
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([10, 20, 30])

def test_reverse_sorted_list():
    # Test with a list that is sorted in reverse order
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([30, 20, 10])

def test_unsorted_list():
    # Test with a list that is unsorted
    codeflash_output = sorter([3, 1, 4, 5, 2])
    codeflash_output = sorter([10, 5, 20, 15])

def test_single_element_list():
    # Test with a list containing a single element
    codeflash_output = sorter([1])
    codeflash_output = sorter([42])

def test_empty_list():
    # Test with an empty list
    codeflash_output = sorter([])

def test_list_with_duplicates():
    # Test with a list containing duplicate elements
    codeflash_output = sorter([2, 3, 2, 1, 3])
    codeflash_output = sorter([5, 5, 5, 5])

def test_list_with_negative_numbers():
    # Test with a list containing negative numbers
    codeflash_output = sorter([-1, -3, -2, 0, 2])
    codeflash_output = sorter([-5, -10, 0, 5, 10])

def test_list_with_mixed_numbers():
    # Test with a list containing both positive and negative numbers
    codeflash_output = sorter([-10, 5, -20, 15, 0])
    codeflash_output = sorter([3, -1, 4, -5, 2])

def test_list_with_floats():
    # Test with a list containing floating point numbers
    codeflash_output = sorter([2.5, 3.1, 1.8, 2.9])
    codeflash_output = sorter([1.1, 1.01, 1.001])

def test_list_with_strings():
    # Test with a list containing strings
    codeflash_output = sorter(["apple", "banana", "cherry"])
    codeflash_output = sorter(["dog", "cat", "bird"])

def test_large_list():
    # Test with a large list to assess performance
    large_list = list(range(1000, 0, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

def test_non_comparable_elements():
    # Test with a list containing non-comparable elements
    with pytest.raises(TypeError):
        sorter([1, "two", 3])
    with pytest.raises(TypeError):
        sorter([None, 1, 2])

def test_stability():
    # Test with a list to check stability (order of equal elements)
    codeflash_output = sorter([1, 2, 2, 3, 3, 1])
    codeflash_output = sorter([5, 3, 3, 5, 1, 1])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

# Test basic functionality with sorted list
def test_sorted_list():
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter(['a', 'b', 'c'])

# Test basic functionality with reverse sorted list
def test_reverse_sorted_list():
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter(['z', 'y', 'x'])

# Test basic functionality with unsorted list
def test_unsorted_list():
    codeflash_output = sorter([3, 1, 4, 2, 5])
    codeflash_output = sorter(['b', 'a', 'd', 'c'])

# Test edge case with empty list
def test_empty_list():
    codeflash_output = sorter([])

# Test edge case with single element list
def test_single_element_list():
    codeflash_output = sorter([1])
    codeflash_output = sorter(['a'])

# Test edge case with repeated elements
def test_repeated_elements():
    codeflash_output = sorter([2, 3, 2, 1, 1])
    codeflash_output = sorter(['a', 'b', 'a', 'c', 'b'])

# Test edge case with negative numbers
def test_negative_numbers():
    codeflash_output = sorter([-1, -3, -2, 0, 2])

# Test edge case with mixed positive and negative numbers
def test_mixed_numbers():
    codeflash_output = sorter([3, -1, 2, -3, 0])

# Test special case with all identical elements
def test_identical_elements():
    codeflash_output = sorter([5, 5, 5, 5])

# Test special case with large numbers
def test_large_numbers():
    codeflash_output = sorter([1000000, 500000, 1000001])

# Test performance with large list
def test_large_list():
    large_list = list(range(1000, 0, -1))
    sorted_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

# Test robustness with non-comparable elements
def test_non_comparable_elements():
    with pytest.raises(TypeError):
        sorter([1, 'a', 3])

# Test edge case with floats
def test_floats():
    codeflash_output = sorter([3.1, 2.2, 5.5, 4.4])

# Test edge case with mixed integers and floats
def test_mixed_integers_floats():
    codeflash_output = sorter([1, 2.2, 3, 0.5])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

📢 Feedback on this optimization? Discord

The given code is implementing the bubble sort algorithm, which is not optimal for sorting. We can significantly increase the speed of this function by switching to a more efficient sorting algorithm like Timsort, which is the default sorting algorithm used in Python. Here's the optimized version.

 

This utilizes Python's built-in `sort` method, which is highly efficient with a time complexity of O(n log n).
@codeflash-ai-dev codeflash-ai-dev bot added the ⚡️ codeflash Optimization PR opened by CodeFlash AI label Dec 14, 2024
@codeflash-ai-dev codeflash-ai-dev bot requested a review from Saga4 December 14, 2024 20:55
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by CodeFlash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants