A Gradio web UI for Large Language Models.
Its goal is to become the AUTOMATIC1111/stable-diffusion-webui of text generation.
- 3 interface modes: default (two columns), notebook, and chat
- Multiple model backends: transformers, llama.cpp, ExLlama, ExLlamaV2, AutoGPTQ, GPTQ-for-LLaMa, CTransformers, AutoAWQ
- Dropdown menu for quickly switching between different models
- LoRA: load and unload LoRAs on the fly, train a new LoRA using QLoRA
- Precise instruction templates for chat mode, including Llama-2-chat, Alpaca, Vicuna, WizardLM, StableLM, and many others
- 4-bit, 8-bit, and CPU inference through the transformers library
- Use llama.cpp models with transformers samplers (
llamacpp_HF
loader) - Multimodal pipelines, including LLaVA and MiniGPT-4
- Extensions framework
- Custom chat characters
- Very efficient text streaming
- Markdown output with LaTeX rendering, to use for instance with GALACTICA
- API, including endpoints for websocket streaming (see the examples)
To learn how to use the various features, check out the Documentation:
https://github.com/oobabooga/text-generation-webui/wiki
- Clone or download the repository.
- Run the
start_linux.sh
,start_windows.bat
,start_macos.sh
, orstart_wsl.bat
script depending on your OS. - Select your GPU vendor when asked.
- Have fun!
The script creates a folder called installer_files
where it sets up a Conda environment using Miniconda. The installation is self-contained: if you want to reinstall, just delete installer_files
and run the start script again.
To launch the webui in the future after it is already installed, run the same start
script.
Run update_linux.sh
, update_windows.bat
, update_macos.sh
, or update_wsl.bat
.
If you ever need to install something manually in the installer_files
environment, you can launch an interactive shell using the cmd script: cmd_linux.sh
, cmd_windows.bat
, cmd_macos.sh
, or cmd_wsl.bat
.
To define persistent command-line flags like --listen
or --api
, edit the CMD_FLAGS.txt
file with a text editor and add them there. Flags can also be provided directly to the start scripts, for instance, ./start-linux.sh --listen
.
- There is no need to run any of those scripts as admin/root.
- For additional instructions about AMD setup, WSL setup, and nvcc installation, consult this page.
- The installer has been tested mostly on NVIDIA GPUs. If you can find a way to improve it for your AMD/Intel Arc/Mac Metal GPU, you are highly encouraged to submit a PR to this repository. The main file to be edited is
one_click.py
. - For automated installation, you can use the
GPU_CHOICE
,USE_CUDA118
,LAUNCH_AFTER_INSTALL
, andINSTALL_EXTENSIONS
environment variables. For instance:GPU_CHOICE=A USE_CUDA118=FALSE LAUNCH_AFTER_INSTALL=FALSE INSTALL_EXTENSIONS=FALSE ./start_linux.sh
.
Recommended if you have some experience with the command-line.
https://docs.conda.io/en/latest/miniconda.html
On Linux or WSL, it can be automatically installed with these two commands (source):
curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh"
bash Miniconda3.sh
conda create -n textgen python=3.11
conda activate textgen
System | GPU | Command |
---|---|---|
Linux/WSL | NVIDIA | pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 |
Linux/WSL | CPU only | pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu |
Linux | AMD | pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.6 |
MacOS + MPS | Any | pip3 install torch torchvision torchaudio |
Windows | NVIDIA | pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 |
Windows | CPU only | pip3 install torch torchvision torchaudio |
The up-to-date commands can be found here: https://pytorch.org/get-started/locally/.
For NVIDIA, you may also need to manually install the CUDA runtime libraries:
conda install -y -c "nvidia/label/cuda-12.1.0" cuda-runtime
git clone https://github.com/oobabooga/text-generation-webui
cd text-generation-webui
pip install -r <requirements file according to table below>
Requirements file to use:
GPU | CPU | requirements file to use |
---|---|---|
NVIDIA | has AVX2 | requirements.txt |
NVIDIA | no AVX2 | requirements_noavx2.txt |
AMD | has AVX2 | requirements_amd.txt |
AMD | no AVX2 | requirements_amd_noavx2.txt |
CPU only | has AVX2 | requirements_cpu_only.txt |
CPU only | no AVX2 | requirements_cpu_only_noavx2.txt |
Apple | Intel | requirements_apple_intel.txt |
Apple | Apple Silicon | requirements_apple_silicon.txt |
-
Use
requirements_cpu_only.txt
orrequirements_cpu_only_noavx2.txt
in the command above. -
Manually install llama-cpp-python using the appropriate command for your hardware: Installation from PyPI.
- Use the
LLAMA_HIPBLAS=on
toggle. - Note the Windows remarks.
- Use the
-
Manually install AutoGPTQ: Installation.
- Perform the from-source installation - there are no prebuilt ROCm packages for Windows.
-
Manually install ExLlama by simply cloning it into the
repositories
folder (it will be automatically compiled at runtime after that):
cd text-generation-webui
git clone https://github.com/turboderp/exllama repositories/exllama
- For Kepler GPUs and older, you will need to install CUDA 11.8 instead of 12:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
conda install -y -c "nvidia/label/cuda-11.8.0" cuda-runtime
- bitsandbytes >= 0.39 may not work. In that case, to use
--load-in-8bit
, you may have to downgrade like this:- Linux:
pip install bitsandbytes==0.38.1
- Windows:
pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl
- Linux:
The requirments*.txt above contain various precompiled wheels. If you wish to compile things manually, or if you need to because no suitable wheels are available for your hardware, you can use requirements_nowheels.txt
and then install your desired loaders manually.
ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} .
cp docker/.env.example .env
# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model
docker compose up --build
- You need to have docker compose v2.17 or higher installed. See this guide for instructions.
- For additional docker files, check out this repository.
From time to time, the requirements*.txt
changes. To update, use these commands:
conda activate textgen
cd text-generation-webui
pip install -r <requirements file that you've used> --upgrade
Models should be placed in the text-generation-webui/models
folder. They are usually downloaded from Hugging Face.
- Transformers or GPTQ models are made of several files and must be placed in a subfolder. Example:
text-generation-webui
├── models
│ ├── lmsys_vicuna-33b-v1.3
│ │ ├── config.json
│ │ ├── generation_config.json
│ │ ├── pytorch_model-00001-of-00007.bin
│ │ ├── pytorch_model-00002-of-00007.bin
│ │ ├── pytorch_model-00003-of-00007.bin
│ │ ├── pytorch_model-00004-of-00007.bin
│ │ ├── pytorch_model-00005-of-00007.bin
│ │ ├── pytorch_model-00006-of-00007.bin
│ │ ├── pytorch_model-00007-of-00007.bin
│ │ ├── pytorch_model.bin.index.json
│ │ ├── special_tokens_map.json
│ │ ├── tokenizer_config.json
│ │ └── tokenizer.model
- GGUF models are a single file and should be placed directly into
models
. Example:
text-generation-webui
├── models
│ ├── llama-2-13b-chat.Q4_K_M.gguf
In both cases, you can use the "Model" tab of the UI to download the model from Hugging Face automatically. It is also possible to download via the command-line with python download-model.py organization/model
(use --help
to see all the options).
Instructions
GPT-4chan has been shut down from Hugging Face, so you need to download it elsewhere. You have two options:
The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version.
After downloading the model, follow these steps:
- Place the files under
models/gpt4chan_model_float16
ormodels/gpt4chan_model
. - Place GPT-J 6B's config.json file in that same folder: config.json.
- Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan):
python download-model.py EleutherAI/gpt-j-6B --text-only
When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format:
conda activate textgen
cd text-generation-webui
python server.py
Then browse to
http://localhost:7860/?__theme=dark
Optionally, you can use the following command-line flags:
Flag | Description |
---|---|
-h , --help |
show this help message and exit |
--multi-user |
Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is likely not safe for sharing publicly. |
--character CHARACTER |
The name of the character to load in chat mode by default. |
--model MODEL |
Name of the model to load by default. |
--lora LORA [LORA ...] |
The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. |
--model-dir MODEL_DIR |
Path to directory with all the models. |
--lora-dir LORA_DIR |
Path to directory with all the loras. |
--model-menu |
Show a model menu in the terminal when the web UI is first launched. |
--settings SETTINGS_FILE |
Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml , this file will be loaded by default without the need to use the --settings flag. |
--extensions EXTENSIONS [EXTENSIONS ...] |
The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. |
--verbose |
Print the prompts to the terminal. |
--chat-buttons |
Show buttons on the chat tab instead of a hover menu. |
Flag | Description |
---|---|
--loader LOADER |
Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, exllama_hf, exllamav2_hf, exllama, exllamav2, autogptq, gptq-for-llama, llama.cpp, llamacpp_hf, ctransformers, autoawq. |
Flag | Description |
---|---|
--cpu |
Use the CPU to generate text. Warning: Training on CPU is extremely slow. |
--auto-devices |
Automatically split the model across the available GPU(s) and CPU. |
--gpu-memory GPU_MEMORY [GPU_MEMORY ...] |
Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB. |
--cpu-memory CPU_MEMORY |
Maximum CPU memory in GiB to allocate for offloaded weights. Same as above. |
--disk |
If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
--disk-cache-dir DISK_CACHE_DIR |
Directory to save the disk cache to. Defaults to "cache". |
--load-in-8bit |
Load the model with 8-bit precision (using bitsandbytes). |
--bf16 |
Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
--no-cache |
Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost. |
--xformers |
Use xformer's memory efficient attention. This is really old and probably doesn't do anything. |
--sdp-attention |
Use PyTorch 2.0's SDP attention. Same as above. |
--trust-remote-code |
Set trust_remote_code=True while loading the model. Necessary for some models. |
--use_fast |
Set use_fast=True while loading the tokenizer. |
Flag | Description |
---|---|
--load-in-4bit |
Load the model with 4-bit precision (using bitsandbytes). |
--use_double_quant |
use_double_quant for 4-bit. |
--compute_dtype COMPUTE_DTYPE |
compute dtype for 4-bit. Valid options: bfloat16, float16, float32. |
--quant_type QUANT_TYPE |
quant_type for 4-bit. Valid options: nf4, fp4. |
Flag | Description |
---|---|
--n_ctx N_CTX |
Size of the prompt context. |
--threads |
Number of threads to use. |
--threads-batch THREADS_BATCH |
Number of threads to use for batches/prompt processing. |
--mul_mat_q |
Activate new mulmat kernels. |
--n_batch |
Maximum number of prompt tokens to batch together when calling llama_eval. |
--no-mmap |
Prevent mmap from being used. |
--mlock |
Force the system to keep the model in RAM. |
--n-gpu-layers N_GPU_LAYERS |
Number of layers to offload to the GPU. |
--tensor_split TENSOR_SPLIT |
Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17. |
--llama_cpp_seed SEED |
Seed for llama-cpp models. Default is 0 (random). |
--numa |
Activate NUMA task allocation for llama.cpp. |
--cache-capacity CACHE_CAPACITY |
Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
Flag | Description |
---|---|
--gpu-split |
Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7. |
--max_seq_len MAX_SEQ_LEN |
Maximum sequence length. |
--cfg-cache |
ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. |
Flag | Description |
---|---|
--triton |
Use triton. |
--no_inject_fused_attention |
Disable the use of fused attention, which will use less VRAM at the cost of slower inference. |
--no_inject_fused_mlp |
Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. |
--no_use_cuda_fp16 |
This can make models faster on some systems. |
--desc_act |
For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. |
--disable_exllama |
Disable ExLlama kernel, which can improve inference speed on some systems. |
Flag | Description |
---|---|
--wbits WBITS |
Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
--model_type MODEL_TYPE |
Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
--groupsize GROUPSIZE |
Group size. |
--pre_layer PRE_LAYER [PRE_LAYER ...] |
The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60 . |
--checkpoint CHECKPOINT |
The path to the quantized checkpoint file. If not specified, it will be automatically detected. |
--monkey-patch |
Apply the monkey patch for using LoRAs with quantized models. |
Flag | Description |
---|---|
--model_type MODEL_TYPE |
Model type of pre-quantized model. Currently gpt2, gptj, gptneox, falcon, llama, mpt, starcoder (gptbigcode), dollyv2, and replit are supported. |
Flag | Description |
---|---|
--deepspeed |
Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. |
--nvme-offload-dir NVME_OFFLOAD_DIR |
DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
--local_rank LOCAL_RANK |
DeepSpeed: Optional argument for distributed setups. |
Flag | Description |
---|---|
--rwkv-strategy RWKV_STRATEGY |
RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". |
--rwkv-cuda-on |
RWKV: Compile the CUDA kernel for better performance. |
Flag | Description |
---|---|
--alpha_value ALPHA_VALUE |
Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb , not both. |
--rope_freq_base ROPE_FREQ_BASE |
If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63) . |
--compress_pos_emb COMPRESS_POS_EMB |
Positional embeddings compression factor. Should be set to (context length) / (model's original context length) . Equal to 1/rope_freq_scale . |
Flag | Description |
---|---|
--listen |
Make the web UI reachable from your local network. |
--listen-port LISTEN_PORT |
The listening port that the server will use. |
--listen-host LISTEN_HOST |
The hostname that the server will use. |
--share |
Create a public URL. This is useful for running the web UI on Google Colab or similar. |
--auto-launch |
Open the web UI in the default browser upon launch. |
--gradio-auth USER:PWD |
Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3". |
--gradio-auth-path GRADIO_AUTH_PATH |
Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above. |
--ssl-keyfile SSL_KEYFILE |
The path to the SSL certificate key file. |
--ssl-certfile SSL_CERTFILE |
The path to the SSL certificate cert file. |
Flag | Description |
---|---|
--api |
Enable the API extension. |
--public-api |
Create a public URL for the API using Cloudfare. |
--public-api-id PUBLIC_API_ID |
Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. |
--api-blocking-port BLOCKING_PORT |
The listening port for the blocking API. |
--api-streaming-port STREAMING_PORT |
The listening port for the streaming API. |
Flag | Description |
---|---|
--multimodal-pipeline PIPELINE |
The multimodal pipeline to use. Examples: llava-7b , llava-13b . |
Inference settings presets can be created under presets/
as yaml files. These files are detected automatically at startup.
The presets that are included by default are the result of a contest that received 7215 votes. More details can be found here.
If you would like to contribute to the project, check out the Contributing guidelines.
- Subreddit: https://www.reddit.com/r/oobabooga/
- Discord: https://discord.gg/jwZCF2dPQN
In August 2023, Andreessen Horowitz (a16z) provided a generous grant to encourage and support my independent work on this project. I am extremely grateful for their trust and recognition, which will allow me to dedicate more time towards realizing the full potential of text-generation-webui.