-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
491a304
commit 9e5be0e
Showing
1 changed file
with
306 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,306 @@ | ||
# ============================================================================= | ||
# IMPORTS | ||
# ============================================================================= | ||
import argparse | ||
import os | ||
|
||
import numpy as np | ||
import torch | ||
torch.set_default_dtype(torch.float32) | ||
|
||
import espaloma as esp | ||
from simtk import unit | ||
from simtk.unit.quantity import Quantity | ||
|
||
|
||
def run(args): | ||
|
||
ds = esp.data.dataset.GraphDataset().load( | ||
'ds.th', | ||
) | ||
|
||
def subtract_offset(g): | ||
elements = [atom.atomic_number for atom in g.mol.atoms] | ||
offset = esp.data.utils.sum_offsets(elements) | ||
g.nodes['g'].data['u_ref'] -= offset | ||
return g | ||
|
||
@torch.no_grad() | ||
def exclude_high_energy(g): | ||
u_min = g.nodes['g'].data['u_ref'].min() | ||
u_threshold = u_min + 0.1 # hatree | ||
mask = torch.lt(g.nodes['g'].data['u_ref'], u_threshold).squeeze() | ||
|
||
print('%s selected' % (mask.sum().numpy().item() / mask.shape[0])) | ||
|
||
g.nodes['g'].data['u_ref'] = g.nodes['g'].data['u_ref'][:, mask] | ||
|
||
g.nodes['n1'].data['xyz'].requires_grad = False | ||
g.nodes['n1'].data['xyz'] = g.nodes['n1'].data['xyz'][:, mask, :] | ||
g.nodes['n1'].data['xyz'].requires_grad = True | ||
|
||
g.nodes['n1'].data['u_ref_prime'] = g.nodes['n1'].data['u_ref_prime'][:, mask, :] | ||
|
||
|
||
return g | ||
|
||
@torch.no_grad() | ||
def subsample(g, n_samples=1000): | ||
n_total_samples = g.nodes['g'].data['u_ref'].shape[1] | ||
mask = np.random.choice(list(range(n_total_samples)), n_samples, replace=False).tolist() | ||
|
||
g.nodes['g'].data['u_ref'] = g.nodes['g'].data['u_ref'][:, mask] | ||
|
||
g.nodes['n1'].data['xyz'].requires_grad = False | ||
g.nodes['n1'].data['xyz'] = g.nodes['n1'].data['xyz'][:, mask, :] | ||
g.nodes['n1'].data['xyz'].requires_grad = True | ||
|
||
g.nodes['n1'].data['u_ref_prime'] = g.nodes['n1'].data['u_ref_prime'][:, mask, :] | ||
|
||
return g | ||
|
||
ds.apply( | ||
subtract_offset, | ||
in_place=True, | ||
) | ||
|
||
ds.apply( | ||
exclude_high_energy, | ||
in_place=True, | ||
) | ||
|
||
ds = esp.data.dataset.GraphDataset( | ||
[g for g in ds if g.nodes['g'].data['u_ref'].shape[1] > 1000] | ||
) | ||
|
||
print(ds.graphs) | ||
|
||
ds.apply( | ||
subsample, | ||
in_place=True | ||
) | ||
|
||
print(len(ds)) | ||
|
||
ds.apply( | ||
esp.data.md.subtract_nonbonded_force, | ||
in_place=True, | ||
) | ||
|
||
# ds.save('ds_lean.th') | ||
|
||
# ds = esp.data.dataset.GraphDataset().load('ds_lean.th') | ||
|
||
ds_tr, ds_te = ds.split([4, 1]) | ||
|
||
_ds_tr = ds_tr.view(batch_size=20, shuffle=True) | ||
_ds_te = ds_te.view(batch_size=20, shuffle=True) | ||
|
||
# layer | ||
layer = esp.nn.layers.dgl_legacy.gn(args.layer) | ||
|
||
# representation | ||
representation = esp.nn.Sequential(layer, config=args.config) | ||
|
||
# get the last bit of units | ||
units = [int(x) for x in args.config if isinstance(x, int) or (isinstance(x, str) and x.isdigit())][-1] | ||
|
||
janossy_config = [] | ||
for x in args.janossy_config: | ||
if isinstance(x, int): | ||
janossy_config.append(int(x)) | ||
|
||
elif x.isdigit(): | ||
janossy_config.append(int(x)) | ||
|
||
else: | ||
janossy_config.append(x) | ||
|
||
readout = esp.nn.readout.janossy.JanossyPooling( | ||
in_features=units, config=janossy_config, | ||
out_features={ | ||
1: {'sigma': 1, 'epsilon': 1}, | ||
2: {'k': 1, 'eq': 1}, | ||
3: {'k': 1, 'eq': 1}, | ||
4: {'k': 6}, | ||
}, | ||
) | ||
|
||
global_readout = esp.nn.readout.graph_level_readout.GraphLevelReadout( | ||
units, | ||
[units, args.graph_act, 1024], | ||
[1024, args.graph_act, 1024, args.graph_act, 1], | ||
'u0', | ||
) | ||
|
||
class AddRef(torch.nn.Module): | ||
def forward(self, g): | ||
g.nodes['n2'].data['k'] += g.nodes['n2'].data['k_ref'] | ||
g.nodes['n3'].data['k'] += g.nodes['n3'].data['k_ref'] | ||
g.nodes['n2'].data['eq'] += g.nodes['n2'].data['eq_ref'] | ||
g.nodes['n3'].data['eq'] += g.nodes['n3'].data['eq_ref'] | ||
return g | ||
|
||
add_ref = AddRef() | ||
|
||
net = torch.nn.Sequential( | ||
representation, | ||
readout, | ||
global_readout, | ||
# add_ref, | ||
esp.mm.geometry.GeometryInGraph(), | ||
esp.mm.energy.EnergyInGraph(), | ||
# esp.mm.energy.EnergyInGraph(suffix='_ref'), | ||
) | ||
|
||
|
||
metrics_tr = [ | ||
esp.metrics.GraphMetric( | ||
base_metric=esp.metrics.std(torch.nn.MSELoss(reduction='none')), | ||
between=['u', "u_ref"], | ||
level="g", | ||
), | ||
|
||
|
||
esp.metrics.GraphHalfDerivativeMetric( | ||
base_metric=torch.nn.MSELoss(), | ||
weight=args.weight, | ||
), | ||
|
||
] | ||
|
||
|
||
metrics_te = [ | ||
esp.metrics.GraphMetric( | ||
base_metric=esp.metrics.r2, | ||
between=['u', 'u_ref'], | ||
level="g", | ||
), | ||
esp.metrics.GraphMetric( | ||
base_metric=esp.metrics.rmse, | ||
between=['u', 'u_ref'], | ||
level="g", | ||
), | ||
|
||
] | ||
|
||
|
||
optimizer = torch.optim.Adam(net.parameters(), args.lr) | ||
normalize = esp.data.normalize.PositiveNotNormalize | ||
|
||
train = esp.app.experiment.Train( | ||
net=net, | ||
data=_ds_tr, | ||
optimizer=optimizer, | ||
n_epochs=args.n_epochs, | ||
metrics=metrics_tr, | ||
normalize=normalize, | ||
device=torch.device('cuda:0'), | ||
record_interval=1000, | ||
) | ||
|
||
|
||
train.train() | ||
|
||
|
||
ds_te.apply( | ||
lambda g: subsample(g, 100), | ||
in_place=True, | ||
) | ||
|
||
|
||
ds_tr.apply( | ||
lambda g: subsample(g, 100), | ||
in_place=True, | ||
) | ||
|
||
ds_te = ds_te.view(batch_size=len(ds_te)) | ||
ds_tr = ds_tr.view(batch_size=len(ds_tr)) | ||
|
||
states = train.states | ||
|
||
test = esp.app.experiment.Test( | ||
net=net, | ||
data=ds_te, | ||
metrics=metrics_te, | ||
states=states, | ||
normalize=normalize, | ||
) | ||
|
||
test.test() | ||
|
||
ref_g_test = test.ref_g | ||
|
||
results_te = test.results | ||
|
||
test = esp.app.experiment.Test( | ||
net=net, | ||
data=ds_tr, | ||
metrics=metrics_te, | ||
states=states, | ||
normalize=normalize, | ||
) | ||
|
||
test.test() | ||
ref_g_training = test.ref_g | ||
results_tr = test.results | ||
|
||
results = {"test": results_te, "train": results_tr} | ||
|
||
print(esp.app.report.markdown(results)) | ||
|
||
import os | ||
os.mkdir(args.out) | ||
|
||
torch.save(net.state_dict(), args.out + "/net.th") | ||
|
||
with open(args.out + "/result_table.md", "w") as f_handle: | ||
f_handle.write(esp.app.report.markdown(results)) | ||
|
||
curves = esp.app.report.curve(results) | ||
|
||
for spec, curve in curves.items(): | ||
np.save(args.out + "/" + "_".join(spec) + ".npy", curve) | ||
|
||
import pickle | ||
with open(args.out + "/ref_g_test.th", "wb") as f_handle: | ||
pickle.dump(ref_g_test, f_handle) | ||
|
||
with open(args.out + "/ref_g_training.th", "wb") as f_handle: | ||
pickle.dump(ref_g_training, f_handle) | ||
|
||
print(esp.app.report.markdown(results)) | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--layer", default="GraphConv", type=str) | ||
parser.add_argument("--n_classes", default=100, type=int) | ||
parser.add_argument( | ||
"--config", nargs="*", default=[32, "tanh", 32, "tanh", 32, "tanh"] | ||
) | ||
|
||
parser.add_argument( | ||
"--training_metrics", nargs="*", default=["TypingCrossEntropy"] | ||
) | ||
parser.add_argument( | ||
"--test_metrics", nargs="*", default=["TypingAccuracy"] | ||
) | ||
parser.add_argument( | ||
"--out", default="results", type=str | ||
) | ||
parser.add_argument("--janossy_config", nargs="*", default=[32, "leaky_relu"]) | ||
|
||
parser.add_argument("--graph_act", type=str, default="leaky_relu") | ||
|
||
parser.add_argument("--n_epochs", default=10, type=int) | ||
|
||
parser.add_argument("--weight", default=1.0, type=float) | ||
|
||
parser.add_argument("--lr", default=1e-5, type=float) | ||
|
||
args = parser.parse_args() | ||
|
||
run(args) |