Skip to content

Commit

Permalink
Deployed 2008bac with MkDocs version: 1.6.1
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions[bot] committed Oct 14, 2024
0 parents commit a6b853b
Show file tree
Hide file tree
Showing 85 changed files with 55,690 additions and 0 deletions.
Empty file added .nojekyll
Empty file.
1,017 changes: 1,017 additions & 0 deletions 404.html

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions CNAME
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
docs.tinygrad.org
119 changes: 119 additions & 0 deletions abstractions2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
# tinygrad is a tensor library, and as a tensor library it has multiple parts
# 1. a "runtime". this allows buffer management, compilation, and running programs
# 2. a "Device" that uses the runtime but specifies compute in an abstract way for all
# 3. a "LazyBuffer" that fuses the compute into kernels, using memory only when needed
# 4. a "Tensor" that provides an easy to use frontend with autograd ".backward()"


print("******** first, the runtime ***********")

from tinygrad.runtime.ops_clang import ClangProgram, ClangCompiler, MallocAllocator

# allocate some buffers
out = MallocAllocator.alloc(4)
a = MallocAllocator.alloc(4)
b = MallocAllocator.alloc(4)

# load in some values (little endian)
MallocAllocator.copyin(a, bytearray([2,0,0,0]))
MallocAllocator.copyin(b, bytearray([3,0,0,0]))

# compile a program to a binary
lib = ClangCompiler().compile("void add(int *out, int *a, int *b) { out[0] = a[0] + b[0]; }")

# create a runtime for the program (ctypes.CDLL)
fxn = ClangProgram("add", lib)

# run the program
fxn(out, a, b)

# check the data out
print(val := MallocAllocator.as_buffer(out).cast("I").tolist()[0])
assert val == 5


print("******** second, the Device ***********")

DEVICE = "CLANG" # NOTE: you can change this!

import struct
from tinygrad.dtype import PtrDType, dtypes
from tinygrad.device import Buffer, Device
from tinygrad.ops import BinaryOps, MetaOps, UOp, UOps
from tinygrad.shape.shapetracker import ShapeTracker

# allocate some buffers + load in values
out = Buffer(DEVICE, 1, dtypes.int32).allocate()
a = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
b = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
# NOTE: a._buf is the same as the return from MallocAllocator.alloc

# describe the computation
buf_1 = UOp(UOps.DEFINE_GLOBAL, PtrDType(dtypes.int32), (), 1)
buf_2 = UOp(UOps.DEFINE_GLOBAL, PtrDType(dtypes.int32), (), 2)
ld_1 = UOp(UOps.LOAD, dtypes.int32, (buf_1, ShapeTracker.from_shape((1,)).to_uop()))
ld_2 = UOp(UOps.LOAD, dtypes.int32, (buf_2, ShapeTracker.from_shape((1,)).to_uop()))
alu = ld_1 + ld_2
output_buf = UOp(UOps.DEFINE_GLOBAL, PtrDType(dtypes.int32), (), 0)
st_0 = UOp(UOps.STORE, dtypes.void, (output_buf, ShapeTracker.from_shape((1,)).to_uop(), alu))
s = UOp(UOps.SINK, dtypes.void, (st_0,))

# convert the computation to a "linearized" format (print the format)
from tinygrad.engine.realize import get_kernel, CompiledRunner
kernel = get_kernel(Device[DEVICE].renderer, s).linearize()

# compile a program (and print the source)
fxn = CompiledRunner(kernel.to_program())
print(fxn.p.src)
# NOTE: fxn.clprg is the ClangProgram

# run the program
fxn.exec([out, a, b])

# check the data out
assert out.as_buffer().cast('I')[0] == 5


print("******** third, the LazyBuffer ***********")

from tinygrad.engine.lazy import LazyBuffer
from tinygrad.engine.realize import run_schedule
from tinygrad.engine.schedule import create_schedule

# allocate some values + load in values
a = LazyBuffer.metaop(MetaOps.EMPTY, (1,), dtypes.int32, DEVICE)
b = LazyBuffer.metaop(MetaOps.EMPTY, (1,), dtypes.int32, DEVICE)
a.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
b.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
del a.srcs
del b.srcs

# describe the computation
out = a.alu(BinaryOps.ADD, b)

# schedule the computation as a list of kernels
sched = create_schedule([out])
for si in sched: print(si.ast.op) # NOTE: the first two convert it to CLANG

# DEBUGGING: print the compute ast
print(sched[-1].ast)
# NOTE: sched[-1].ast is the same as st_0 above

# run that schedule
run_schedule(sched)

# check the data out
assert out.realized.as_buffer().cast('I')[0] == 5


print("******** fourth, the Tensor ***********")

from tinygrad import Tensor

a = Tensor([2], dtype=dtypes.int32, device=DEVICE)
b = Tensor([3], dtype=dtypes.int32, device=DEVICE)
out = a + b

# check the data out
print(val:=out.item())
assert val == 5
62 changes: 62 additions & 0 deletions abstractions3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# abstractions2 goes from back to front, here we will go from front to back
from typing import List
from tqdm import tqdm
from tinygrad.helpers import DEBUG

# *****
# 0. Load mnist on the device

from tinygrad.nn.datasets import mnist
X_train, Y_train, _, _ = mnist()
X_train = X_train.float()
X_train -= X_train.mean()

# *****
# 1. Define an MNIST model.

from tinygrad import Tensor

l1 = Tensor.kaiming_uniform(128, 784)
l2 = Tensor.kaiming_uniform(10, 128)
def model(x): return x.flatten(1).dot(l1.T).relu().dot(l2.T)
l1n, l2n = l1.numpy(), l2.numpy()

# *****
# 2. Choose a batch for training and do the backward pass.

from tinygrad.nn.optim import SGD
optim = SGD([l1, l2])

X, Y = X_train[(samples:=Tensor.randint(128, high=X_train.shape[0]))], Y_train[samples]
optim.zero_grad()
model(X).sparse_categorical_crossentropy(Y).backward()
optim._step() # this will step the optimizer without running realize

# *****
# 3. Create a schedule.

# The weight Tensors have been assigned to, but not yet realized. Everything is still lazy at this point
# l1.lazydata and l2.lazydata define a computation graph

from tinygrad.engine.schedule import ScheduleItem
schedule: List[ScheduleItem] = Tensor.schedule(l1, l2)

print(f"The schedule contains {len(schedule)} items.")
for si in schedule: print(str(si)[:80])

# *****
# 4. Lower a schedule.

from tinygrad.engine.realize import lower_schedule_item, ExecItem
lowered: List[ExecItem] = [ExecItem(lower_schedule_item(si).prg, list(si.bufs)) for si in tqdm(schedule)]

# *****
# 5. Run the schedule

for ei in tqdm(lowered): ei.run()

# *****
# 6. Print the weight change

print("first weight change\n", l1.numpy()-l1n)
print("second weight change\n", l2.numpy()-l2n)
Loading

0 comments on commit a6b853b

Please sign in to comment.