Skip to content

Reference implementations of inference benchmarks

License

Notifications You must be signed in to change notification settings

chenqiny/inference

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLPerf Inference Benchmark Suite

MLPerf Inference is a benchmark suite for measuring how fast systems can run models in a variety of deployment scenarios.

Please see the MLPerf Inference benchmark paper for a detailed description of the benchmarks along with the motivation and guiding principles behind the benchmark suite. If you use any part of this benchmark (e.g., reference implementations, submissions, etc.), please cite the following:

@misc{reddi2019mlperf,
    title={MLPerf Inference Benchmark},
    author={Vijay Janapa Reddi and Christine Cheng and David Kanter and Peter Mattson and Guenther Schmuelling and Carole-Jean Wu and Brian Anderson and Maximilien Breughe and Mark Charlebois and William Chou and Ramesh Chukka and Cody Coleman and Sam Davis and Pan Deng and Greg Diamos and Jared Duke and Dave Fick and J. Scott Gardner and Itay Hubara and Sachin Idgunji and Thomas B. Jablin and Jeff Jiao and Tom St. John and Pankaj Kanwar and David Lee and Jeffery Liao and Anton Lokhmotov and Francisco Massa and Peng Meng and Paulius Micikevicius and Colin Osborne and Gennady Pekhimenko and Arun Tejusve Raghunath Rajan and Dilip Sequeira and Ashish Sirasao and Fei Sun and Hanlin Tang and Michael Thomson and Frank Wei and Ephrem Wu and Lingjie Xu and Koichi Yamada and Bing Yu and George Yuan and Aaron Zhong and Peizhao Zhang and Yuchen Zhou},
    year={2019},
    eprint={1911.02549},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MLPerf Inference master

The master of this repository contains work in progress for the next official release.

The list of models for the next official releases (> 0.7) is not finalized at this point.

See the individual Readme files in the reference app for details.

model reference app framework dataset
resnet50-v1.5 vision/classification_and_detection tensorflow, pytorch, onnx imagenet2012
ssd-mobilenet 300x300 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 300x300
ssd-resnet34 1200x1200 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 1200x1200
bert language/bert tensorflow, pytorch, onnx squad-1.1
dlrm recommendation/dlrm pytorch, tensorflow(?), onnx(?) Criteo Terabyte
3d-unet vision/medical_imageing/3d-unet pytorch, tensorflow(?), onnx(?) BraTS 2019
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus

MLPerf Inference v0.7 (submission 9/18/2020)

Use the r0.7 branch (git checkout r0.7) if you want to submit or reproduce v0.7 results.

See the individual Readme files in the reference app for details.

model reference app framework dataset
resnet50-v1.5 vision/classification_and_detection tensorflow, pytorch, onnx imagenet2012
ssd-mobilenet 300x300 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 300x300
ssd-resnet34 1200x1200 vision/classification_and_detection tensorflow, pytorch, onnx coco resized to 1200x1200
bert language/bert tensorflow, pytorch, onnx squad-1.1
dlrm recommendation/dlrm pytorch, tensorflow(?), onnx(?) Criteo Terabyte
3d-unet vision/medical_imageing/3d-unet pytorch, tensorflow(?), onnx(?) BraTS 2019
rnnt speech_recognition/rnnt pytorch OpenSLR LibriSpeech Corpus

MLPerf Inference v0.5

Use the r0.5 branch (git checkout r0.5) if you want to reproduce v0.5 results.

See the individual Readme files in the reference app for details.

model reference app framework dataset
resnet50-v1.5 v0.5/classification_and_detection tensorflow, pytorch, onnx imagenet2012
mobilenet-v1 v0.5/classification_and_detection tensorflow, pytorch, onnx imagenet2012
ssd-mobilenet 300x300 v0.5/classification_and_detection tensorflow, pytorch, onnx coco resized to 300x300
ssd-resnet34 1200x1200 v0.5/classification_and_detection tensorflow, pytorch, onnx coco resized to 1200x1200
gnmt v0.5/translation/gnmt/ tensorflow, pytorch See Readme

About

Reference implementations of inference benchmarks

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 77.9%
  • C++ 13.4%
  • Shell 3.5%
  • Jupyter Notebook 2.0%
  • CSS 1.4%
  • Dockerfile 0.8%
  • Other 1.0%