Skip to content

chaozhong2010/Satellite-Segmentation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Satellite-Segmentation

This is a satellite remote sensing segmentation project wirtten by Keras based on SegNet and U-Net.

main ideas

  1. segmented by SegNet
  2. segmented by U-Net
  3. model emsamble: SegNet + U-Net

other ideas

  1. GAN pix2pix: generate some fake satellite images to enlarge the dataset
  2. DeepLab
  3. Mask RCNN
  4. FCN
  5. RefineNet
  6. post-processing: CRF
图片说明
图片说明 图片说明

4月2日更新

我上传了我预处理后的数据集,一份是专门给segnet训练,一份是给unet训练的(只上传了buildings的数据集),所以如果不想自己处理原始数据的话,可以下载我的预处理后的数据跑跑效果看看。建议先跑SegNet效果再跑Unet效果。

预处理后的数据集:

链接:https://pan.baidu.com/s/1FwHkvp2esvhyOx1eSZfkog 密码:fqnw

下载之后可以看到里面有三个文件夹,分别是用于测试的图片,用于unet训练的图片(里面是src和label文件夹),用于segnet的图片(里面是src和label文件夹)。对于segnet训练集我已经切割好了,但是unet的还没切割,所以需要执行该文件生成unet训练集:

python ./unet/gen_dataset.py

在执行之前需要先在该文件里面图片读取路径修改为我上传的unet训练集路径,输出路径也要修改一下。

怎么跑SegNet?

可以先在segnet_train.py里修改filepath ,改成segnet训练集的路径,然后 训练:

python segnet_train.py --model segnet.h5

--model后面接的是训练之后得到的模型名字

预测:待预测的图片的路径在segnet_predict.py里面修改

python segnet_predict.py

怎么跑Unet?

训练:

python unet_train.py --model unet_buildings20.h5 --data ./unet_train/buildings/

--model后面接的是训练之后得到的模型名字,--data后面接的是unet的训练集路径

预测:unet_predict.py里面改预测图片的所在路径

python unet_predict.py

怎么做label可视化?

  1. 有朋友反映原始数据集里的训练集有些图片全黑,这是因为这些图片是十六位的!比赛方就是这么折腾人,所以一般图片浏览器无法显示这些16位图,解决方法: 深度16位的图片转8位:matlab下:im2 = uint8(im1);

  2. label怎么都是黑色的啊?因为每类的标签的值都是1到5啊,像素1~5当然是黑色啊!想看看标签长什么样的解决方法:参考介个文件:

https://github.com/AstarLight/Satellite-Segmentation/blob/master/draw_lables.cpp

这里我用cpp做了可视化,当然用Python写也是不难的。可视化之后,你也会发现赛会方在又给我们设置第二坑了~

original dataset download:

链接:https://pan.baidu.com/s/1i6oMukH

密码:yqj2

Please visit my blog for more details: http://www.cnblogs.com/skyfsm/p/8330882.html

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.0%
  • C++ 2.0%