Skip to content

With the Mediapipe library we can draw up to 21 landmarks in the hand area

Notifications You must be signed in to change notification settings

cNICKepc/HandTracking

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

How it's works

  1. First import the library that we need
import cv2
import numpy as np
import mediapipe as mp
  1. Make the program to connect to the webcam
import cv2
import numpy as numpy

cap = cv2.VideoCapture(0)
while True:
    _, frame = cap.read()
    cv2.imshow('Hand Tracking', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

cap.release()
cv2.destroyAllWindows()
  1. Load the module of hands and drawing_utils
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
  1. Determine the minimum percentage
with mp_hands.Hands(
    min_detection_confidence=0.8,
    min_tracking_confidence=0.8) as hands:
  1. Chanfe BGR to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
  1. To optimize the program change writeable to False
image.flags.writeable = False
  1. processing
results = hands.process(image)
  1. Change RGB to BGR
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
  1. Make a loop and draw the landmark
if results.multi_hand_landmarks:
    for hand_landmarks in results.multi_hand_landmarks:
        mp_drawing.draw_landmarks(
            	image, hand_landmarks, mp_hands.HAND_CONNECTIONS,mp_drawing.DrawingSpec(color=(0, 0, 255 )),
                mp_drawing.DrawingSpec(color=(255, 255, 255 )))

Demo

Clik the picture to see the Video Watch the video

About

With the Mediapipe library we can draw up to 21 landmarks in the hand area

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%