Skip to content

Version 2.3.1

Compare
Choose a tag to compare
@chaoming0625 chaoming0625 released this 29 Dec 12:08
· 1070 commits to master since this release
2e2d6f4

This release (under the release branch of brainpy=2.3.x) continues to add supports for brain-inspired computation.

import brainpy as bp
import brainpy.math as bm

Backwards Incompatible Changes

1. Error: module 'brainpy' has no attribute 'datasets'

brainpy.datasets module is now published as an independent package brainpy_datasets.

Please change your dataset access from

bp.datasets.xxxxx

to

import brainpy_datasets as bp_data

bp_data.chaos.XXX
bp_data.vision.XXX

For a chaotic data series,

# old version
data = bp.datasets.double_scroll_series(t_warmup + t_train + t_test, dt=dt)
x_var = data['x']
y_var = data['y']
z_var = data['z']

# new version
data = bd.chaos.DoubleScrollEq(t_warmup + t_train + t_test, dt=dt)
x_var = data.xs
y_var = data.ys
z_var = data.zs

For a vision dataset,

# old version
dataset = bp.datasets.FashionMNIST(root, train=True, download=True)

# new version
dataset = bd.vision.FashionMNIST(root, split='train', download=True)

2. Error: DSTrainer must receive an instance with BatchingMode

This error will happen when using brainpy.OnlineTrainer , brainpy.OfflineTrainer, brainpy.BPTT , brainpy.BPFF.

From version 2.3.1, BrainPy explicitly consider the computing mode of each model. For trainers, all training target should be a model with BatchingMode or TrainingMode.

If you are training model with OnlineTrainer or OfflineTrainer,

# old version
class NGRC(bp.DynamicalSystem):
  def __init__(self, num_in):
    super(NGRC, self).__init__()
    self.r = bp.layers.NVAR(num_in, delay=2, order=3)
    self.di = bp.layers.Dense(self.r.num_out, num_in)

  def update(self, sha, x):
    di = self.di(sha, self.r(sha, x))
    return x + di


# new version
bm.set_enviroment(mode=bm.batching_mode)

class NGRC(bp.DynamicalSystem):
  def __init__(self, num_in):
    super(NGRC, self).__init__()
    self.r = bp.layers.NVAR(num_in, delay=2, order=3)
    self.di = bp.layers.Dense(self.r.num_out, num_in, mode=bm.training_mode)

  def update(self, sha, x):
    di = self.di(sha, self.r(sha, x))
    return x + di

If you are training models with BPTrainer, adding the following line at the top of the script,

bm.set_enviroment(mode=bm.training_mode)

3. Error: inputs_are_batching is no longer supported.

This is because if the training target is in batching mode, this has already indicated that the inputs should be batching.

Simple remove the inputs_are_batching from your functional call of .predict() will solve the issue.

New Features

1. brainpy.math module upgrade

brainpy.math.surrogate module for surrogate gradient functions.

Currently, we support

  • brainpy.math.surrogate.arctan
  • brainpy.math.surrogate.erf
  • brainpy.math.surrogate.gaussian_grad
  • brainpy.math.surrogate.inv_square_grad
  • brainpy.math.surrogate.leaky_relu
  • brainpy.math.surrogate.log_tailed_relu
  • brainpy.math.surrogate.multi_gaussian_grad
  • brainpy.math.surrogate.nonzero_sign_log
  • brainpy.math.surrogate.one_input
  • brainpy.math.surrogate.piecewise_exp
  • brainpy.math.surrogate.piecewise_leaky_relu
  • brainpy.math.surrogate.piecewise_quadratic
  • brainpy.math.surrogate.q_pseudo_spike
  • brainpy.math.surrogate.relu_grad
  • brainpy.math.surrogate.s2nn
  • brainpy.math.surrogate.sigmoid
  • brainpy.math.surrogate.slayer_grad
  • brainpy.math.surrogate.soft_sign
  • brainpy.math.surrogate.squarewave_fourier_series

New transformation function brainpy.math.to_dynsys

New transformation function brainpy.math.to_dynsys supports to transform a pure Python function into a DynamicalSystem. This will be useful when running a DynamicalSystem with arbitrary customized inputs.

import brainpy.math as bm

hh = bp.neurons.HH(1)

@bm.to_dynsys(child_objs=hh)
def run_hh(tdi, x=None):
    if x is not None:
	    hh.input += x
    
runner = bp.DSRunner(run_hhh, monitors={'v': hh.V})
runner.run(inputs=bm.random.uniform(3, 6, 1000))

Default data types

Default data types brainpy.math.int_, brainpy.math.float_ and brainpy.math.complex_ are initialized according to the default x64 settings. Then, these data types can be set or get by brainpy.math.set_* or brainpy.math.get_* syntaxes.

Take default integer type int_ as an example,

# set the default integer type
bm.set_int_(jax.numpy.int64)

# get the default integer type
a1 = bm.asarray([1], dtype=bm.int_)
a2 = bm.asarray([1], dtype=bm.get_int()) # equivalent

Default data types are changed according to the x64 setting of JAX. For instance,

bm.enable_x64()
assert bm.int_ == jax.numpy.int64
bm.disable_x64()
assert bm.int_ == jax.numpy.int32

brainpy.math.float_ and brainpy.math.complex_ behaves similarly with brainpy.math.int_.

Environment context manager

This release introduces a new concept computing environment in BrainPy. Computing environment is a default setting for current computation jobs, including the default data type (int_, float_, complex_), the default numerical integration precision (dt), the default computing mode (mode). All models, arrays, and computations using the default setting will be carried out under the environment setting.

Users can set a default environment through

brainpy.math.set_environment(mode, dt, x64)

However, ones can also construct models or perform computation through a temporal environment context manager, this can be implemented through:

# constructing a HH model with dt=0.1 and x64 precision
with bm.environment(mode, dt=0.1, x64=True):
    hh1 = bp.neurons.HH(1)
    
# constructing a HH model with dt=0.05 and x32 precision
with bm.environment(mode, dt=0.05, x64=False):
    hh2 = bp.neuron.HH(1)

Usually, users construct models for either brain-inspired computing (training mode) or brain simulation (nonbatching mode), therefore, there are shortcut context manager for setting a training environment or batching environment:

with bm.training_environment(dt, x64):
    pass

with bm.batching_environment(dt, x64):
    pass

2. brainpy.dyn module

brainpy.dyn.transfom module for transforming a DynamicalSystem instance to a callable BrainPyObject.

Specifically, we provide

  • LoopOverTime for unrolling a dynamical system over time.
  • NoSharedArg for removing the dependency of shared arguments.

3. Running supports in BrainPy

All brainpy.Runner now are subclasses of BrainPyObject

This means that all brainpy.Runner can be used as a part of the high-level program or transformation.

Enable the continuous running of a differential equation (ODE, SDE, FDE, DDE, etc.) with IntegratorRunner.

For example,

import brainpy as bp

# differential equation
a, b, tau = 0.7, 0.8, 12.5
dV = lambda V, t, w, Iext: V - V * V * V / 3 - w + Iext
dw = lambda w, t, V: (V + a - b * w) / tau
fhn = bp.odeint(bp.JointEq([dV, dw]), method='rk4', dt=0.1)

# differential integrator runner
runner = bp.IntegratorRunner(fhn, monitors=['V', 'w'], inits=[1., 1.])

# run 1
Iext, duration = bp.inputs.section_input([0., 1., 0.5], [200, 200, 200], return_length=True)
runner.run(duration, dyn_args=dict(Iext=Iext))
bp.visualize.line_plot(runner.mon.ts, runner.mon['V'], legend='V')

# run 2
Iext, duration = bp.inputs.section_input([0.5], [200], return_length=True)
runner.run(duration, dyn_args=dict(Iext=Iext))
bp.visualize.line_plot(runner.mon.ts, runner.mon['V'], legend='V-run2', show=True)

Enable call a customized function during fitting of brainpy.BPTrainer.

This customized function (provided through fun_after_report) will be useful to save a checkpoint during the training. For instance,

class CheckPoint:
    def __init__(self, path='path/to/directory/'):
        self.max_acc = 0.
        self.path = path
        
    def __call__(self, idx, metrics, phase):
        if phase == 'test' and metrics['acc'] > self.max_acc:
            self.max_acc = matrics['acc']
            bp.checkpoints.save(self.path, net.state_dict(), idx)

trainer = bp.BPTT()
trainer.fit(..., fun_after_report=CheckPoint())    

Enable data with data_first_axis format when predicting or fitting in a brainpy.DSRunner and brainpy.DSTrainer.

Previous version of BrainPy only supports data with the batch dimension at the first axis. Currently, brainpy.DSRunner and brainpy.DSTrainer can support the data with the time dimension at the first axis. This can be set through data_first_axis='T' when initializing a runner or trainer.

runner = bp.DSRunner(..., data_first_axis='T')
trainer = bp.DSTrainer(..., data_first_axis='T')

4. Utility in BrainPy

brainpy.encoding module for encoding rate values into spike trains

Currently, we support

  • brainpy.encoding.LatencyEncoder
  • brainpy.encoding.PoissonEncoder
  • brainpy.encoding.WeightedPhaseEncoder

brainpy.checkpoints module for model state serialization.

This version of BrainPy supports to save a checkpoint of the model into the physical disk. Inspired from the Flax API, we provide the following checkpoint APIs:

  • brainpy.checkpoints.save() for saving a checkpoint of the model.
  • brainpy.checkpoints.multiprocess_save() for saving a checkpoint of the model in multi-process environment.
  • brainpy.checkpoints.load() for loading the last or best checkpoint from the given checkpoint path.
  • brainpy.checkpoints.load_latest() for retrieval the path of the latest checkpoint in a directory.

Deprecations

1. Deprecations in the running supports of BrainPy

func_monitors is no longer supported in all brainpy.Runner subclasses.

We will remove its supports since version 2.4.0. Instead, monitoring with a dict of callable functions can be set in monitors. For example,

# old version

runner = bp.DSRunner(model, 
                     monitors={'sps': model.spike, 'vs': model.V},
                     func_monitors={'sp10': model.spike[10]})
# new version
runner = bp.DSRunner(model, 
                     monitors={'sps': model.spike, 
                               'vs': model.V, 
                               'sp10': model.spike[10]})

func_inputs is no longer supported in all brainpy.Runner subclasses.

Instead, giving inputs with a callable function should be done with inputs.

# old version

net = EINet()

def f_input(tdi):
    net.E.input += 10.

runner = bp.DSRunner(net, fun_inputs=f_input, inputs=('I.input', 10.))
# new version

def f_input(tdi):
    net.E.input += 10.
    net.I.input += 10.
runner = bp.DSRunner(net, inputs=f_input)

inputs_are_batching is deprecated.

inputs_are_batching is deprecated in predict()/.run() of all brainpy.Runner subclasses.

args and dyn_args are now deprecated in IntegratorRunner.

Instead, users should specify args and dyn_args when using IntegratorRunner.run() function.

dV = lambda V, t, w, I: V - V * V * V / 3 - w + I
dw = lambda w, t, V, a, b: (V + a - b * w) / 12.5
integral = bp.odeint(bp.JointEq([dV, dw]), method='exp_auto')

# old version
runner = bp.IntegratorRunner(
  integral,
  monitors=['V', 'w'], 
  inits={'V': bm.random.rand(10), 'w': bm.random.normal(size=10)},
  args={'a': 1., 'b': 1.},  # CHANGE
  dyn_args={'I': bp.inputs.ramp_input(0, 4, 100)},  # CHANGE
)
runner.run(100.,)
# new version
runner = bp.IntegratorRunner(
  integral,
  monitors=['V', 'w'], 
  inits={'V': bm.random.rand(10), 'w': bm.random.normal(size=10)},
)
runner.run(100., 
           args={'a': 1., 'b': 1.},
           dyn_args={'I': bp.inputs.ramp_input(0, 4, 100)})

2. Deprecations in brainpy.math module

ditype() and dftype() are deprecated.

brainpy.math.ditype() and brainpy.math.dftype() are deprecated. Using brainpy.math.int_ and brainpy.math.float() instead.

brainpy.modes module is now moved into brainpy.math

The correspondences are listed as the follows:

  • brainpy.modes.Mode => brainpy.math.Mode
  • brainpy.modes.NormalMode => brainpy.math.NonBatchingMode
  • brainpy.modes.BatchingMode => brainpy.math.BatchingMode
  • brainpy.modes.TrainingMode => brainpy.math.TrainingMode
  • brainpy.modes.normal => brainpy.math.nonbatching_mode
  • brainpy.modes.batching => brainpy.math.batching_mode
  • brainpy.modes.training => brainpy.math.training_mode